Tìm số tự nhiên n để n^2+5+3n chia hết cho n -2
câu 1:số tự nhiên n thỏa mãn 3n+8 chia hết cho n+2 là n=
câu 2:tìm số tự nhiên n khác 1 để 3n+5 chia hết cho n
tick mình đi mình giải choBac Lieu
3n+8 chia hết cho n+2
=>3(n+2)+2 chia hết cho n+2
=>n+2 thuộc Ư(2)={1;2}
+/n+2=1=>n=-1
+/n+2=2=>n=0
vì n thuộc N
nên n=0
câu 2:
3n+5 chia hết cho n
=>5 chia hết cho n
=>n thuộc U(5)={1;5}
vì n khác 1 nên n=5
câu 1: Tìm số tự nhiên n để n2 + 3 chia hết cho n+ 2
câu 2: Tìm số tự nhiên n để (3n+14) chia hết cho n+1
Bài 1: Tìm số tự nhiên n để:
a) (n+5 ) chia hết cho 2
b)(2n +9 chia hết cho (n+1)
c) (3n+5) chia hết cho (n-2)
d) (3n+1) chia hết cho (11-2n)
b) ( 2n + 9 ) chia hết cho ( n + 1 )
=> 2n + 2 + 7 chia hết cho ( n + 1 )
=> 2 . ( n + 1 ) chia hết cho ( n + 1 ) mà 2 . ( n + 1 ) chia hết cho ( n + 1 )
=> 7 chia hết cho ( n + 1 ) => ( n + 1 ) thuộc Ư ( 7 ) = { 1 , 7 }
Vậy n thuộc { 1 , 7 }
a)Số tự nhiên n thõa mãn 3n+8 chia hết cho n+2 là n=.....................
b) Tìm số tự nhiên n khác 1 để 3n+4 chia hết cho n
Trả lời: n=................................
3n + 8 chia hết cho n + 2
3n + 6 + 2 chia hết cho n + 2
Mà 3n + 6 chia hết cho n + 2
Nên 2 chia hết cho n + 2
n + 2 thuộc Ư(2) = {-2 ; - 1; 1 ; 2}
Mà n là số tự nhiên nên n = 0
3n + 4 chia hết cho n
Mà 3 n chia hết cho n
Nên 4 chia hết cho n
=> n thuộc Ư(4) = {1;2;4}
n khác 1 => n thuộc {2;4}
Câu 1: Làm lại nha:))
Ta có: 3n + 8 chia hết cho n + 2
Mà: n + 2 chia hết cho n + 2
=> 3( n + 2 ) chia hết cho n + 2
=> 3n + 6 chia hết cho n + 2
Từ đó => ( 3n + 8 ) - ( 3n + 6 ) chia hết cho n + 2
=> 2 chia hết cho n + 2
=> n + 2 \(\in\) Ư( 2 )
=> n + 2 = 2
=> n = 0
3n + 8 chia hết cho n + 2
(3n+6)+2 chia hết cho n + 2
Mà 3n + 6 chia hết cho n + 2
Nên 2 chia hết cho n + 2
n + 2 thuộc Ư﴾2﴿ = {‐2 ; ‐ 1; 1 ; 2}
Mà n là số tự nhiên nên n = 0
3n + 4 chia hết cho n
Mà 3 n chia hết cho n
Nên 4 chia hết cho n
=> n thuộc Ư﴾4﴿ = {1;2;4} n khác 1
=> n thuộc {2;4}
1)Tìm số tự nhiên n để 3n+4 chia hết cho n-1
2)Tìm số tự nhiên n để 6n-3 chia hết cho 3n+1
Các bạn nhanh giúp mình với
1 trong 2 bài cũng được
trả lời...................................
đúng nhé..............................
hk tốt.........................................
1)Ta có : 3n+4 = 3 ( n - 1 ) + 3 + 4
= 3 ( n - 1 ) + 7
Vì ( n - 1 ) chia hết cho ( n -1 ) =>3 ( n - 1 ) chia hết cho ( n -1 )
Để [ 3 ( n - 1 ) + 7 ] chia hết cho ( n - 1 ) thì 7 chia hết cho n - 1
Suy ra : n -1 thuộc Ư( 7 ) = { 1 ; 7 }
Nếu : n - 1 = 7 thì n = 7 + 1 = 8 ( thỏa mãn ĐK )
Nếu : n - 1 = 1 thì n = 1 + 1 = 2 ( thỏa mãn ĐK )
Vậy n = 8 hoặc n = 2 là giá trị cần tìm
1)
3n+4 chia hết cho n - 1
ĐK : \(n\ge1\)
Ta có : 3n+4 = 3 ( n - 1 ) + 3 + 4
= 3 ( n - 1 ) + 7
Vì ( n - 1 ) chia hết cho ( n -1 )
Để [ 3 ( n - 1 ) + 7 ] chia hết cho ( n - 1 )
thì 7 chia hết cho n - 1
Suy ra : n -1 thuộc Ư( 7 ) = { 1 ; 7 }
Nếu : n - 1 = 7 thì n = 7 + 1 = 8 ( thỏa mãn ĐK )
Nếu : n - 1 = 1 thì n = 1 + 1 = 2 ( thỏa mãn ĐK )
Vậy n = 8 hoặc n = 2 là giá trị cần tìm
Tìm các số tự nhiên n để n2-3n+5 chia hết n-2
Ta có: n2 - 3n + 5 = n2 - 2n - n + 2 + 3 = (n-2)(n-1) + 3
Do đó để n2 - 3n + 5 chia hết cho n - 2 thì 3 chia hết cho n - 2.
=> n - 2 thuộc Ư(3) = { -1; -3; 1; 3} => n thuộc { 1; -1; 3; 5 } mà n là STN nên n = 1 ; n = 3 và n = 5 thỏa mãn đề bài.
Tìm số tự nhiên n để 3n + 11 chia hết cho n+2
Tìm số tự nhiên n để (3n + 14) chia hết cho (n + 2).
\(\left(3n+14\right)⋮\left(n+2\right)\\ \Rightarrow\left[\left(3n+6\right)+8\right]⋮\left(n+2\right)\\ \Rightarrow\left[3\left(n+2\right)+8\right]⋮\left(n+2\right)\)
Vì \(3\left(n+2\right)⋮\left(n+2\right)\Rightarrow8⋮\left(n+2\right)\Rightarrow n+2\in8=\left\{\pm1;\pm2;\pm4;\pm8\right\}\Rightarrow n\in\left\{-10;-6;-4;-3;-1;0;2;6\right\}\)
3n+4=3.(n+2)+2
để 3.(n+2)+2 chia hết cho n+2
=> 2 chia hết cho n+2
mà n là số tự nhiên
=> n=0
Tìm số tự nhiên n để (3n + 14) chia hết cho ( n + 2)
3n + 14 chia hết cho n + 2
⇒ 3n + 6 + 8 chia hết cho n + 2
⇒ 3(n + 2) + 8 chia hết chi n + 2
⇒ 8 chia hết cho n + 2
⇒ n + 2 ∈ Ư(8) = {1; -1; 2; -2; 4; -4; 8; -8}
⇒ n ∈ {-1; -3; 0; -4; 2; -6; 6; -10}
Mà n là số tự nhiên
⇒ n ∈ {0; 2; 6}
\(\left(3n+14\right)=3\left(n+2\right)+8\)
Để \(\left(3n+14\right)⋮\left(n+2\right)\Rightarrow\left(n+2\right)\inƯ\left(8\right)\)
\(\Rightarrow\left(n+2\right)\in\left\{-1;1;-2;2;-4;4;-8;8\right\}\)
\(\Rightarrow n\in\left\{-3;-1;-4;0;-6;2;-10;6\right\}\)