Những câu hỏi liên quan
NK
Xem chi tiết
NH
Xem chi tiết
SS
Xem chi tiết
NK
5 tháng 7 2016 lúc 14:38

tui ko bít bạn học lớp mí

Bình luận (0)
PH
7 tháng 4 2018 lúc 20:42

lớp999999

Bình luận (0)
DT
Xem chi tiết
H24
Xem chi tiết
LF
28 tháng 10 2016 lúc 11:38

Ta có:

\(A=\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)

\(=\left|x-2015\right|+\left|x-2016\right|+\left|2017-x\right|\)

\(\ge x-2015+0+2017-x=2\)

Dấu = khi \(\begin{cases}x-2015\ge0\\x-2016=0\\x-2017\le0\end{cases}\)\(\Rightarrow\begin{cases}x\ge2015\\x=2016\\x\le2017\end{cases}\)\(\Rightarrow x=2016\)

Vậy MinA=2 khi x=2016

 

Bình luận (6)
ND
28 tháng 10 2016 lúc 12:15

x=2016

 

Bình luận (0)
NL
22 tháng 3 2017 lúc 21:22

x = 2016 <=> Min của A = 2

Bình luận (0)
NL
Xem chi tiết
UI
1 tháng 5 2018 lúc 10:25

C = ..................................................................... ( giống cái đề bài )

   = ( x + 2017 ) + ( x + 2018 ) + ( x + 2019 )

   = ( x + x + x )  + ( 2017 + 2018 + 2019 )

   = 3x + 6054

Vì ( x + 2017 ) là căn bậc 2 của ( x+2017 )^2 => x+2017 > hoặc = 0

    ( x + 2018 ) ........................... ( x+2018)^2 => x+2018 > hoặc = 0

     ( x + 2019) ............................( x+2019 )^2 => x+2019 > hoặc = 0

SUY RA ( x+2017 ) + ( x+2018 ) + ( x+2019 ) > hoặc = 0 => 3x + 6054 > hoặc = 0

dấu đẳng thức xảy ra <=> 3x + 6054 = 0 <=> 3x = - 6054 <=> x = - 2018

Vậy C có GTNN là 0 khi x = - 2018

Bình luận (0)
DT
Xem chi tiết
TD
Xem chi tiết
TC
14 tháng 11 2021 lúc 20:28

Ta có:

\(A=\sqrt{1-x}+\sqrt{1+x}\) \(\left(-1\le x\le1\right)\)

\(=1.\sqrt{1-x}+1.\sqrt{1+x}\)

Áp dụng BĐT Bunhiacopxki, ta có:

\(A=1.\sqrt{1-x}+1.\sqrt{1+x}\)

\(\le\sqrt{\left(1^2+1^2\right).\left(1-x+1+x\right)}=\sqrt{2.2}=2\)

Vậy \(A_{max}=2\), đạt được khi và chỉ khi \(\dfrac{1}{\sqrt{1-x}}=\dfrac{1}{\sqrt{1+x}}\Leftrightarrow1-x=1+x\Leftrightarrow x=0\)

Bình luận (3)
SG
Xem chi tiết
ZK
8 tháng 12 2016 lúc 23:12

Đặt A = |x-2015|+|2016-x| +|x-2017|
=> A = |x-2015|+|x-2016| +|2017-x|

Ta có |x-2015| \(\ge\)x - 2015 (với mọi x)

         |x-2016| \(\ge\)0 (với mọi x)

         |2017-x| \(\ge\) 2017 - x (với mọi x)
=> |x-2015|+|x-2016| +|2017-x| \(\ge\)(x - 2015) + 0 + (2017 - x) (với mọi x)
=> A \(\ge\)2 (với mọi x)
=> A đạt GTNN là 2 khi

 \(\hept{\begin{cases}\text{|x-2015|\ge0}\\\text{|x-2016|=0}\\\text{|2017-x|\ge0}\end{cases}}\Leftrightarrow\hept{\begin{cases}x-2015\ge0\\x-2016=0\\2017-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2015\\x=2016\\x\le2017\end{cases}\Rightarrow x=2016}\)
Vậy GTNN của A là 2 tại x = 2016

Bình luận (0)
NH
7 tháng 3 2018 lúc 20:53

BN làm đúng rồi đó

Bình luận (0)