Q(x0=4x^2+16x. Tìm nghiệm của đa thức
Cho phân thức P(x)=5x^2/(x^6+x^5-x^3-5x^2-4x+1). Chứng minh rằng tồn tại một đa thức Q(x) với các hệ số nguyên sao cho Q(x0)=P(x0) với mọi x0 là nghiệm của đa thức R(x)=x^8_x^4+1
x0 là gì bạn
Cho phân thức P(x)=5x2/(x6+x5-x3-5x2-4x+1). Chứng minh rằng tồn tại một đa thức Q(x) với các hệ số nguyên sao cho Q(x0)=P(x0) với mọi x0 là nghiệm của đa thức R(x)=x8- x4+1
tìm nghiệm của đa thức
a)16x-32
b)4x2+4x
c)3x2+4x-(27+4x)
d)4x3-4x2
a) 16x-32=0
16x =0-32
16x=-32
x=-32:16
x=-2
Vậy x=-2 là nghiệm của đa thức
Tìm nghiệm của đa thức M(x)=P(x) -Q(x0
tìm nghiệm của đa thức\(16x^2+8x+1\)
tìm nghiệm của đa thức :4x^3-8x^2+16x
\nTìm nghiệm của đa thức
a) H(x) =4x^3-16x
b) G(x)= (x+1/2)*(3-1/2x)
c) P(x)= 2x^2-8
a) H(x) = 4x3 - 16x
Để H(x) có nghiệm => 4x3 - 16x = 0
=> 4x3 = 16x
=> 4x2 = 16
=> x2 = 4
=> \(\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
Vậy nghiệm của đa thức H(x) = 4x3 - 16x là 2 và -2
b) G(x) = \(\left(x+\frac{1}{2}\right)\cdot\left(3-\frac{1}{2}x\right)\)
Để G(x) có nghiệm => \(\left(x+\frac{1}{2}\right)\cdot\left(3-\frac{1}{2}x\right)=0\)
=> \(\orbr{\begin{cases}x+\frac{1}{2}=0\\3-\frac{1}{2}x=0\end{cases}}\)
=> \(\orbr{\begin{cases}x+\frac{1}{2}=0\\\frac{1}{2}x=3\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{1}{2}\\x=6\end{cases}}\)
Vậy nghiệm của đa thức G(x) = \(\left(x+\frac{1}{2}\right)\cdot\left(3-\frac{1}{2}x\right)\)là -1/2 và 6
c) P(x) = 2x2 - 8
Để P(x) có nghiệm => 2x2 - 8 = 0
=> 2x2 = 8
=> x2 = 4
=> \(\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
Vậy nghiệm của đa thức P(x) = 2x2 - 8 là 2 và -2
Bài 8.Tìm nghiệm của các đa thức sau:
a) 𝑥2 -8x +7 c) 3𝑥2 +4x – 4 e) 5𝑥2 -16x +3
b) 𝑥2 + 𝑥 - 20 d) 3𝑥2 - 4𝑥 - 7 f) 𝑥2 + 3𝑥 - 10
a) Ta có: \(x^2-8x+7=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=7\end{matrix}\right.\)
b) Ta có: \(x^2+x-20=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=4\end{matrix}\right.\)
c) Ta có: \(3x^2+4x-4=0\)
\(\Leftrightarrow3x^2+6x-2x-4=0\)
\(\Leftrightarrow3x\left(x+2\right)-2\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{2}{3}\end{matrix}\right.\)
d) Ta có: \(3x^2-4x-7=0\)
\(\Leftrightarrow3x^2-7x+3x-7=0\)
\(\Leftrightarrow\left(3x-7\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-1\end{matrix}\right.\)
e) Ta có: \(5x^2-16x+3=0\)
\(\Leftrightarrow5x^2-15x-x+3=0\)
\(\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)
f) Ta có: \(x^2+3x-10=0\)
\(\Leftrightarrow x^2+5x-2x-10=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
a)
\(x^2-8x+7=0\text{⇔}\text{⇔}x^2-7x-x-7=\left(x-7\right)\left(x-1\right)=0\text{⇔}\left[{}\begin{matrix}x=1\\x=7\end{matrix}\right.\)
Vậy nghiệm của đa thức : \(S=\left\{1;7\right\}\)
c)
\(3x^2+4x-4=0\text{⇔}3x^2+6x-2x-4=\left(3x-2\right)\left(x+2\right)=0\text{⇔}\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)
Vậy nghiệm của đa thức : \(S=\left\{\dfrac{2}{3};-2\right\}\)
b)
\(x^2+x-20=0⇔\left(x-4\right)\left(x+5\right)=0\text{⇔}\left[{}\begin{matrix}x=4\\x=-5\end{matrix}\right.\)
d)
\(3x^2-4x-7=0\text{⇔}\left(3x-7\right)\left(x+1\right)=0\text{⇔}\left[{}\begin{matrix}x=-1\\x=\dfrac{7}{3}\end{matrix}\right.\)
e)
\(5x^2-16x+3\text{⇔}\left(x-3\right)\left(5x-1\right)=0\text{⇔}\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)
f)
\(x^2+3x-10=0\text{⇔}\left(x-2\right)\left(x+5\right)=0\text{⇔}\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
\(\)
Tìm nghiệm của đa thức Q(x) = x^2+4x
\(Q\left(x\right)=x^2+4x\)
\(\Leftrightarrow x^2+4x=0\)
\(\Leftrightarrow x\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Vậy nghiệm của đa thức .....
\(Q(x)=0\) \(\Leftrightarrow x^2+4x\) \(\Leftrightarrow(x+\text{4)x=0}\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Cho đa thức.A(x)=4x3-2x2-7x+2017
B(x)=-4x3+x2+17x-2017
a.Tính P(x)=A(x)+B(x0 và tính Q(x)=A(x)-B(x).
b.Tìm nghiệm của đa thức P(x)
a)
P(x)=(4x3-2x2-7x+2017)+(-4x3+x2+17x-2017)
=4x3+(-2x2)+(-7x)+2017+(-4x3)+x2+17x+(-2017)
=-x2+10x
Q(x)=(4x3-2x2-7x+2017)-(-4x3+x2+17x-2017)
=4x3+(-2x2)+(-7x)+2017+4x3=(-x2)+(-17x)+2017
=8x3-3x2-24x+4034
b)P(x)=-x2+10x
Ta có:-x2+10x=0
-1x2+10x=0
x(-1x+10)=0
TH1:x=0
TH2:-1x+10=0
=>x=10
Vậy x=0 và 10 là nghiệm đa thức P(x)