Những câu hỏi liên quan
TA
Xem chi tiết
LP
17 tháng 6 2018 lúc 17:06

A = 1/31 + 1/32 + 1/33 + ... + 1/60

=> A = (1/31 + 1/32 + ... + 1/45) + (1/46 + 1/47 + ... 1/60) > (1/45) x 15 + (1/60) x 15

=> A > 1/3 + 1/4 = 7/12

Vậy A > 7/12 (đpcm)

Bình luận (0)
VK
Xem chi tiết
SN
26 tháng 7 2015 lúc 17:56

\(A=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)

\(=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}\right)+\left(\frac{1}{46}+...+\frac{1}{60}\right)>\frac{1}{45}.15+\frac{1}{60}.15=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)

=>đpcm

l-i-k-e cho mình nha

Bình luận (0)
TA
9 tháng 3 2017 lúc 20:49

vì sao lại thế

Bình luận (0)
TA
Xem chi tiết
H24
9 tháng 3 2017 lúc 23:41

A:  có 30 số hạng không đủ 

phải chia nhỏ ra

\(A=\left(\frac{1}{31}+...+\frac{1}{36}\right)+\left(\frac{1}{37}+..+\frac{1}{48}\right)+\left(\frac{1}{49}+..+\frac{1}{60}\right)\)

\(A>\left(\frac{6}{36}\right)+\left(\frac{12}{48}\right)+\left(\frac{12}{60}\right)=\frac{3}{12}+\frac{3}{12}+\frac{1}{12}=\frac{7}{12}\)

Bình luận (0)
LD
Xem chi tiết
LD
28 tháng 7 2018 lúc 15:38

giup minh nhanh nhe

Bình luận (0)
OO
28 tháng 7 2018 lúc 15:38

tích mình đi

ai tích mình 

mình tích lại 

thanks

Bình luận (0)
AK
28 tháng 7 2018 lúc 15:43

Số lượng số dãy số trên là : 

\(\left(60-31\right):1+1=30\) ( số ) 

Do \(30⋮2\)nên ta nhóm A thành 2 nhóm như sau : 

\(A=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}\right)+\left(\frac{1}{46}+\frac{1}{47}+...+\frac{1}{60}\right)\)

Ta có : \(\frac{1}{31}>\frac{1}{45};\frac{1}{32}>\frac{1}{45};...;\frac{1}{44}>\frac{1}{45}\)

\(\Rightarrow\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}>\frac{1}{45}.15=\frac{1}{3}\left(1\right)\)

\(\frac{1}{46}>\frac{1}{60};\frac{1}{47}>\frac{1}{60};...;\frac{1}{59}>\frac{1}{60}\)

\(\Rightarrow\frac{1}{46}+\frac{1}{47}+...+\frac{1}{60}>\frac{1}{60}.15=\frac{1}{4}\left(2\right)\)

Từ ( 1 ) ; ( 2 ) 

\(\Rightarrow A>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\left(đpcm\right)\)

Bình luận (0)
VL
Xem chi tiết
H24
4 tháng 2 2016 lúc 22:53

Ta có : \(\frac{1}{31}>\frac{1}{40};\frac{1}{32}>\frac{1}{40};\frac{1}{33}>\frac{1}{40};...;\frac{1}{38}>\frac{1}{40};\frac{1}{39}>\frac{1}{40}\)

=> \(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{39}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{10}{40}=\frac{1}{4}\)  (1)

            \(\frac{1}{41}>\frac{1}{50};\frac{1}{42}>\frac{1}{50};\frac{1}{43}>\frac{1}{50};...;\frac{1}{48}>\frac{1}{50};\frac{1}{49}>\frac{1}{50}\)

=> \(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{49}>\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{10}{50}=\frac{1}{5}\) (2)

            \(\frac{1}{51}>\frac{1}{60};\frac{1}{52}>\frac{1}{60};\frac{1}{53}>\frac{1}{60};...;\frac{1}{58}>\frac{1}{60};\frac{1}{59}>\frac{1}{60}\)

=> \(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{59}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=\frac{10}{60}=\frac{1}{6}\)(3)

Từ (1) , (2) và (3) => \(\frac{1}{31}+...+\frac{1}{39}+\frac{1}{40}+\frac{1}{41}+...+\frac{1}{49}+\frac{1}{50}+\frac{1}{51}+...+\frac{1}{59}+\frac{1}{60}>\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\)

=> \(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}>\frac{37}{60}>\frac{35}{60}=\frac{7}{12}\)

=> \(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}>\frac{7}{12}\)

=> \(A>\frac{7}{12}\)

Hài lòng chưa má? -_-

 

Bình luận (0)
TN
4 tháng 2 2016 lúc 22:29

tôi rất dốt toán CMR chắc chỉ còn cách tính A thôi

Bình luận (0)
TN
4 tháng 2 2016 lúc 22:33

ns đến bài Tết thì hình như tôi cũng có 50 bài toán  -_-"

Bình luận (0)
TC
Xem chi tiết
H24
31 tháng 7 2019 lúc 16:29

Cho A= 1/31+1/32+1/33+.....+1/60

Chứng minh 3/5<A<4/5

GIẢI

Ta có :

\(A=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+.........+\frac{1}{60}\)

\(\Leftrightarrow A=\left(\frac{1}{31}+\frac{1}{32}+....+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+....+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+.....+\frac{1}{60}\right)\left(1\right)\)

Mà:

\(\frac{1}{31}>\frac{1}{32}>\frac{1}{33}>\frac{1}{34}>\frac{1}{35}>\frac{1}{36}>\frac{1}{37}>\frac{1}{38}>\frac{1}{39}>\frac{1}{40}\)

\(\Rightarrow\frac{1}{31}+\frac{1}{32}+........+\frac{1}{40}>\frac{1}{40}+.......+\frac{1}{40}\)

\(\Leftrightarrow\frac{1}{31}+\frac{1}{32}+......+\frac{1}{40}>10\times\frac{1}{40}\)

\(\Leftrightarrow\frac{1}{31}+\frac{1}{32}+..........+\frac{1}{40}>\frac{1}{4}\)

Tương tự:

\(\frac{1}{41}+\frac{1}{42}+.........+\frac{1}{50}>\frac{1}{5}\)

\(\frac{1}{51}+\frac{1}{52}+.....+\frac{1}{60}>\frac{1}{6}\)

\(\Rightarrow A>\frac{1}{4}+\frac{1}{5}+\frac{1}{6}=\frac{37}{60}>\frac{36}{60}=\frac{3}{5}\)

Vậy \(\frac{3}{5}< A\left(2\right)\)

Từ (1), ta lại có:

\(\frac{1}{31}+\frac{1}{32}+.......+\frac{1}{40}< 10\times\frac{1}{30}=\frac{1}{3}\)

\(\frac{1}{41}+\frac{1}{42}+..........+\frac{1}{50}< 10\times\frac{1}{40}=\frac{1}{4}\)

\(\frac{1}{51}+\frac{1}{52}+.........+\frac{1}{60}< 10\times\frac{1}{50}=\frac{1}{5}\)

\(\Rightarrow A< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}=\frac{47}{60}< \frac{48}{60}=\frac{4}{5}\)

Vậy \(A< \frac{4}{5}\left(3\right)\)

Từ (2) và (3) , suy ra:

\(\frac{3}{5}< A< \frac{4}{5}\)

Bình luận (0)
PL
21 tháng 2 2020 lúc 11:42

ad ơi cho em hỏi là tại sao lại phải nhóm 10 phân số 1 nhóm vậy ạk

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
LC
Xem chi tiết
OS
9 tháng 4 2018 lúc 12:45

https://olm.vn/hoi-dap/question/144852.html

vào đây xem lời giải nó ( cách giải giống cô mik)

Bình luận (0)
AK
9 tháng 4 2018 lúc 12:44

Ta có :  \(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)

\(=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}\right)+\left(\frac{1}{46}+\frac{1}{47}+...+\frac{1}{60}\right)\)

 Số lượng số dãy số ban đầu là : 

( 60 - 31 ) : 1 + 1 = 30 ( số ) 

Chia làm 2 nhóm , mỗi nhóm có : 

30 : 2 = 15 ( số ) 

Ta có : \(\frac{1}{31}>\frac{1}{45};\frac{1}{32}>\frac{1}{45};...;\frac{1}{45}=\frac{1}{45}\)

\(\Rightarrow\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}>\frac{1}{45}.15\)

\(\Rightarrow\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}>\frac{1}{3}\left(1\right)\)

Ta có : \(\frac{1}{46}>\frac{1}{60};\frac{1}{47}>\frac{1}{60};\frac{1}{60}=\frac{1}{60}\)

\(\Rightarrow\frac{1}{46}+\frac{1}{47}+...+\frac{1}{60}>\frac{1}{60}.15\)

\(\Rightarrow\frac{1}{46}+\frac{1}{47}+...+\frac{1}{60}>\frac{1}{4}\left(2\right)\)

Từ ( 1 ) ; ( 2 ) 

\(\Rightarrow\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}>\frac{1}{3}+\frac{1}{4}\)

\(\Rightarrow\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}>\frac{7}{12}\left(Đpcm\right)\)

Chúc bạn học tốt nha !!! 

Bình luận (0)
BL
Xem chi tiết
AT
25 tháng 3 2017 lúc 21:40

Ta có:

\(A=\left(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}\right)+\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}\right)+\left(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{60}\right)\)

\(A>\dfrac{1}{40}.10+\dfrac{1}{50}.10+\dfrac{1}{60}.10=\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}=\dfrac{37}{60}>\dfrac{3}{5}\)

Vậy \(A>\dfrac{3}{5}\)

Ta có:

\(A=\left(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}\right)+\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}\right)+\left(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{60}\right)\)\(A< \dfrac{1}{31}.10+\dfrac{1}{41}.10+\dfrac{1}{51}.10< \dfrac{4}{5}\)

Vậy \(A< \dfrac{4}{5}\)

Do đó: \(\dfrac{3}{5}< A< \dfrac{4}{5}\)

Bình luận (0)