Tam giác ABC vuông tại A,có AB=3cm,AC=4cm, đường cao AH, trung tuyến AM.tính độ dài HM
Tam giác ABC vuông tại A,có AB=3cm,AC=4cm, đường cao AH, trung tuyến AM.tính độ dài HM
Tam giác ABC vuông tại A,có AB=3cm,AC=4cm, đường cao AH, trung tuyến AM.tính độ dài HM
Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A tính BC=5cm.
Theo hệ thức lượng trong tam giác vuông ABC tính AH=2,4cm.
AM là trung tuyến tam giác ABC vuông tại A nên AM=BC/2=5/2=2,5cm.
Áp dụng định lýPy-ta-go vào tam giác AHM vuông tại H tính HM=0,7cm
cho tam giác ABC, vuông tại A. đường cao AH .trung tuyến AM.tính AM,HM,BH,CH,AB,AC nết bt
a, AH=4,8cm BC=10cm
b, AH=12cm BC=25cm
c, AH=3cm BC=4cm
d, AH=6cm BC=13cm
Cho ∆ ABC vuông tại A có AB = 3cm, AC = 4cm, đường cao AH và đường trung tuyến AM. Độ dài đoạn thẳng HM là:
A. HM = 7 10 cm
B. HM = 9 5 cm
C. HM = 43 10 cm
D. HM = 5 2 cm
Áp dụng định lý Pytago trong tam giác vuông: ABC :
Áp dụng hệ thức lượng trong tam giác vuông ABC:
M là trung điểm củaBC
Vậy HM = BM – BH = 7 10 (cm)
Đáp án cần chọn là: A
Cho tam giác ABC vuông tại A có đường cao AH và đường trung tuyến AM. Biết AH=3cm; HB=4cm. Hãy tính AB,AC,AM và diện tích tam giác ABC
\(HC=\dfrac{3^2}{4}=2.25\left(cm\right)\)
BC=HB+HC=6,25(cm)
AM=BC/2=3,125(cm)
\(AB=\sqrt{4\cdot6.25}=5\left(cm\right)\)
\(AC=\sqrt{6.25^2-5^2}=3.75\left(cm\right)\)
+ ) áp dụng định lí Pytago trong tam giác vuông \(ABH\) vuông tại \(H\) , ta có :
\(AB^2=AH^2+HB^2=3^2+4^2=25\Rightarrow AB=5\left(cm\right)\)
+ ) áp dụng hệ thức về cạnh và đường cao trong tam giác vuông \(ABC\) với \(AH\) là đường cao , ta có :
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\) \(\dfrac{1}{AC^2}=\dfrac{1}{AH^2}-\dfrac{1}{AB^2}\)
\(\Leftrightarrow\) \(\dfrac{1}{AC^2}=\dfrac{1}{3^2}-\dfrac{1}{5^2}=\dfrac{16}{225}\)
\(\Rightarrow AC=\dfrac{15}{4}\left(cm\right)\)
+ ) áp dụng định lí Pytago trong tam giác vuông \(ABC\) vuông tại \(A\) , ta có :
\(BC^2=AB^2+AC^2=5^2+\left(\dfrac{15}{4}\right)^2=\dfrac{625}{16}\)
\(\Rightarrow BC=\dfrac{25}{4}\left(cm\right)\)
+ ) tam giác \(ABC\) vuông tại \(A\) có trung tuyến \(AM\) nên ta có :
\(AM=\dfrac{1}{2}BC=\dfrac{25}{8}\left(cm\right)\)
Cho ∆ ABC vuông tại A có đường cao AH và đường trung tuyến AM. Biết AH = 3cm; HB = 4cm. Hãy tính AB, AC, AM và diện tích tam giác ABC.
A. AB = 5cm, AC = 15 4 cm; AM = 25 8 cm; S ∆ A B C = 75 8 c m 2 .
B. AB = 5cm, AC = 3cm; AM = 4cm; S ∆ A B C = 39 4 c m 2 .
C. AB = 14 3 cm, AC = 14 4 cm; AM = 3cm; S ∆ A B C = 75 8 c m 2 .
D. AB = 14 3 cm, AC = 3 cm; AM = 27 8 cm; S ∆ A B C = 9 c m 2
+) Áp dụng định lý Pytago trong tam giác vuông ABH vuông tại H ta có:
+) Áp dụng hệ thức về cạnh và đường cao trng tam giác vuông ABC với AH là đường cao ta có:
+) Áp dụng định lý Pytago trong tam giác vuông ABC vuông tại A ta có:
+) Tam giác ABC vuông tại A có trung tuyến AM nên ta có:
+) Diện tích tam giác ABC với AH là đường cao ta có:
Vậy AB = 5cm, AC = 15 4 cm; AM = 25 8 cm; S ∆ A B C = 75 8 c m 2 .
Đáp án cần chọn là: A
Cho tam giác ABC vuông tại A, AB=30cm, AC=40cm đường cao AH, trung tuyến AM. Tính độ dài BH, HM, MC, AH
BH=18 cm
MH=7 cm
MC= 25 cm
AH=24 cm
Cho tam giác ABC vuông tại A, AB=30cm, AC=40cm đường cao AH, trung tuyến AM. Tính độ dài BH, HM, MC, AH
BH = 18 cm ; MH = 7 cm ; MC = 25 cm ; AH = 24 cm. Chỉ có đáp án thôi nha!
Tam giác ABC vuông tại A , đường cao AH, vẽ HM vuông góc với AB , HN vuông góc với AC , biết AB=3cm, AC=4cm a) tính độ dài MN b) tính số đo các góc tam giác AMN c) tính diện tích BMNC giúp mik với🙇♀️
a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
hay AH=2,4(cm)
Xét tứ giác AMHN có
\(\widehat{MAN}=\widehat{ANH}=\widehat{AMH}=90^0\)
Do đó: AMHN là hình chữ nhật
Suy ra: AH=MN=2,4(cm)