Đa thức f x= x14-14x13+14x12-...+14x2-14x+14. Tính f(13)
Cho đa thức f (x) =x^14 - 14x^13 + 14 x^12 -.....+14x^2 - 14x +14
Tính f (13)
Cho đa thức: f(x)=x14-14x13+14x12-......+13x2-14x+14 Tính f(13)
Giải giúp em nha mọi người :)
lời giải nè
f(x)=x14-(13+1)x13+(13+1)x12-....+(13+1)x2-(13+1)x+(13+1)
mà theo đầu bài f(x)=13 => chỗ nào có 13 ta thay thành x
=>f(13)=x14-(x+1)x13+(x+1)x13-.......+(x+1)x2-(x+1)x+(x+1)
<=>f(13)=x14-x14-x13+x14+x13-.......+x3_x2-x2-x+x+1=1
=>f(13)=1
k cho mk nha!!!
Tìm nghiệm của đa thức sau: x2 + 8x +25
Cho đa thức f(x) = x14 - 14x13 + 14x12 - ... + 14x2 - 14x + 14. Tính f(13)
Bài 1:
\(f\left(x\right)=x^2+8x+25\)
Cho \(f\left(x\right)=0\Rightarrow x^2+8x+25=0\)
\(\Rightarrow x^2+8x+16+9=0\)
\(\Rightarrow\left(x+4\right)^2+9=0\)
Dễ thấy: \(\left(x+4\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+4\right)^2+9\ge9>0\forall x\) ( vô nghiệm )
Vậy đa thức \(f\left(x\right)=x^2+8x+25\) không có nghiệm
Bài 2:
\(f\left(x\right)=x^{14}-14x^{13}+14x^{12}-...+14x^2-14x+14\)
\(f\left(x\right)=x^{14}-\left(13+1\right)x^{13}+\left(13+1\right)x^{12}-...+\left(13+1\right)x^2-\left(13+1\right)x+\left(13+1\right)\)
Do \(f\left(x\right)=13\) nên ta chỗ nào có \(13\) ta thay bằng \(x\)
\(f\left(13\right)=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-...+\left(x+1\right)x^2-\left(x+1\right)x+\left(x+1\right)\)
\(f\left(13\right)=x^{14}-x^{14}-x^3+x^{13}+x^{12}-...+x^3+x^2-x^2-x+x+1=1\)
Vậy \(f\left(13\right)=1\)
Tính giá trị của đa thức sau: f(x)=x^5-14x^4+14x^3-14x^2+14x-1 tại x=13
TL
T i k cho mik ik rồi mik Trả lời cho
#Kirito
1) Cho đa thức \(f\left(x\right)=x^{14}-14.x^{13}+14.x^{12}-...+13.x^2-14.x+14\) Tính f(13)
2) Tính : \(\left(\dfrac{3}{4}-81\right)\left(\dfrac{3^2}{5}-81\right)\left(\dfrac{3^3}{6}-81\right)...\left(\dfrac{3^{2000}}{2003}-81\right)\)
Bài 2:
x=13 nên x+1=14
\(f\left(x\right)=x^{14}-x^{13}\left(x+1\right)+x^{12}\left(x+1\right)-...+x^2\left(x+1\right)-x\left(x+1\right)+14\)
\(=x^{14}-x^{14}-x^{13}+x^{13}-...+x^3+x^2-x^2-x+14\)
=14-x=1
x=13 nên x+1=14
f(x)=x14−x13(x+1)+x12(x+1)−...+x2(x+1)−x(x+1)+14f(x)=x14−x13(x+1)+x12(x+1)−...+x2(x+1)−x(x+1)+14
=x14−x14−x13+x13−...+x3+x2−x2−x+14=x14−x14−x13+x13−...+x3+x2−x2−x+14
=14-x=1
Cho đa thức f(x) = (x+2016)x3 + (x+2016)x +2017 .
Biết f(13) = 14 . Tính f(-13)
đề bài cực kì có vấn đề nhé f(13)=14?Rõ ràng không phải
toán lớp 7 đấy không phải lớp 10 đâu ! Giups mình với nhé !
ôi, nhìn đầu bài là chẳng mun nghĩ cho hại não, có đời nào f(13) =14?
bởi z các bn giỏi ít lên h24 hẳn đi
Cho \(a=\sqrt{2}+\sqrt{7-\sqrt[3]{61+46\sqrt{5}}}+1\) và đa thức \(f\left(x\right)=x^5+2x^{^4}-14x^3-28x^2+9x+19.\) Tính f(a)
\(a=\sqrt{2}+\sqrt{7-2\sqrt{5}-1}+1\)
\(=\sqrt{2}+\sqrt{5}-1+1=\sqrt{2}+\sqrt{5}\)
f(x)=x^4(x+2)-14x^2(x+2)+9(x+2)+1
=(x+2)(x^4-14x^2+9)+1
\(=\left(\sqrt{2}+\sqrt{5}+2\right)\left[\left(7+2\sqrt{10}\right)^2-14\left(7+2\sqrt{10}\right)+1\right]\)+1
\(=\left(\sqrt{2}+\sqrt{5}+2\right)\left(89+28\sqrt{10}-84-28\sqrt{10}+1\right)\)+1
=6(căn 2+căn 5+1)+1
tính giá trị đa thức M(x)=x^5-14x^4+14x^3-14x^2+14x-1 tại x =13
x=13 nên x+1=14
\(M=x^5-x^4\left(x+1\right)+x^3\left(x+1\right)-x^2\left(x+1\right)+x\left(x+1\right)-1\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-1\)
=x-1
=13-1=12
cho hai đa thức: f(x)=5x2-4x+13 và g(x)=9x-7-5x2
a. tính: f(x)+g(x); f(x)-g(x).
b. tìm nghiệm của đa thức: p(x)=f(x)+g(x)
a) \(f\left(x\right)+g\left(x\right)=5x^2-4x+13+9x-7-5x^2=5x+6\)
\(f\left(x\right)-g\left(x\right)=5x^2-4x+13-9x+7+5x^2=10x^2-13x+20\)