Những câu hỏi liên quan
VA
Xem chi tiết
TA
Xem chi tiết
DL
27 tháng 6 2018 lúc 10:03

Nhận xét: mẫu số của mỗi phân số thuộc số bị trừ trong phép tính trên là số thứ tự của phân số đó trong dãy trên.

Từ đó, ta biết được rằng dãy trên ( số bị trừ có 100 phân số )

\(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)=\left(1+1+1+...+1\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

( Tách 100 thành 100 số 1 )

                                                                          \(=\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...+\left(1-\frac{1}{100}\right)\)

                                                                          \(=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}...+\frac{99}{100}\left(đpcm\right).\)

Bình luận (0)
CD
Xem chi tiết
LP
3 tháng 9 2019 lúc 19:53

lolang

Bình luận (0)
HT
Xem chi tiết
TC
10 tháng 3 2017 lúc 22:49

xem lại xem có sai đề bài không bạn ơi, sai thì sửa lại nhé

Bình luận (0)
NN
11 tháng 3 2017 lúc 6:03

viết không viết à cu.Sai đề rồi

Bình luận (0)
NT
Xem chi tiết
Y
16 tháng 6 2019 lúc 17:17

+ \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)-n}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)

\(=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)

\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Do đó : \(A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\)

\(=1-\frac{1}{10}=\frac{9}{10}\)

Bình luận (2)
TG
Xem chi tiết
JI
27 tháng 3 2020 lúc 8:45

Câu hỏi của Ngô Văn Nam - Toán lớp 6 - Học toán với OnlineMath

hihi

Bình luận (0)
 Khách vãng lai đã xóa
TG
27 tháng 3 2020 lúc 8:52

,@HISINOMA KINIMADO biết làm ko ?

Bình luận (0)
 Khách vãng lai đã xóa
KK
Xem chi tiết
YA
22 tháng 2 2017 lúc 19:51

Giả sử \(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)

\(\Rightarrow100=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}+1+\frac{1}{2}+...+\frac{1}{100}\)

\(\Rightarrow100=1+\left(\frac{1}{2}+\frac{1}{2}\right)+\left(\frac{1}{3}+\frac{2}{3}\right)+...+\left(\frac{99}{100}+\frac{1}{100}\right)\)

\(\Rightarrow100=1+1+1+...+1\) (100 chữ số 1)

\(\Rightarrow100=100\)

Vậy \(100-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)

Bình luận (0)
MN
Xem chi tiết
H24
26 tháng 6 2019 lúc 17:31

Tham khảo nha bạn :

Câu hỏi của Trần Minh Hưng - Toán lớp | Học trực tuyến

Bình luận (0)
TT
Xem chi tiết
NL
7 tháng 10 2019 lúc 8:15

\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)^2-n^2\left(n+1\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{\sqrt{n}}{n}+\frac{\sqrt{n+1}}{n+1}\)

\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)

\(=\frac{\sqrt{1}}{1}-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{3}+...+\frac{\sqrt{99}}{99}-\frac{\sqrt{100}}{100}\)

\(=1-\frac{\sqrt{100}}{100}=\frac{9}{10}< 1\)

Bình luận (0)