Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) ta có :
\(\frac{1}{2^2}>\frac{1}{2.3}\)
\(\frac{1}{3^2}>\frac{1}{3.4}\)
\(\frac{1}{4^2}>\frac{1}{4.5}\)
\(............\)
\(\frac{1}{100^2}>\frac{1}{100.101}\)
\(\Rightarrow\)\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\)
\(\Rightarrow\)\(A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\)
\(\Rightarrow\)\(A>\frac{1}{2}-\frac{1}{101}\)
\(\Rightarrow\)\(A>\frac{99}{202}\) \(\left(1\right)\)
Lại có :
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
\(............\)
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\)\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(\Rightarrow\)\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow\)\(A< 1-\frac{1}{100}\)
\(\Rightarrow\)\(A< \frac{99}{100}\) \(\left(2\right)\)
Từ (1) và (2) suy ra : \(\frac{99}{202}< A< \frac{99}{100}\) ( đpcm )
Vậy \(\frac{99}{202}< A< \frac{99}{100}\)
Chúc bạn học tốt ~