cho x= -2/5;y=-4/3.hay so sanh x va y
1, (x+3)chia hết cho(x+1)
2, (2x+5)chia hết cho (x+2)
3,(3x+5)chia hết cho (x-2)
4,(x^2-x+2)chia hết cho (x-1)
5,(x^2+2x+4)chia hết cho (x+1)
2: \(\Leftrightarrow x+2\in\left\{1;-1\right\}\)
hay \(x\in\left\{-1;-3\right\}\)
1, (x+3)chia hết cho(x+1)
2, (2x+5)chia hết cho (x+2)
3,(3x+5)chia hết cho (x-2)
4,(x^2-x+2)chia hết cho (x-1)
5,(x^2+2x+4)chia hết cho (x+1)
1) Ta có x+3=x+1+2
=> 2 chia hết cho x+1
=> x+1 \(\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Ta có bảng
x+1 | -2 | -1 | 1 | 2 |
x | -3 | -2 | 0 | 1 |
2) Ta có 2x+5=2(x+2)+1
=> 1 chia hết cho x+2
=> x+2 =Ư (1)={-1;1}
Nếu x+2=-1 => x=-3
Nếu x+2=1 => x=-1
3, Ta có 3x+5=3(x-2)+11
=> 11 chia hết cho x-2
=> x-2 thuộc Ư (11)={-11;-1;1;11}
Ta có bảng
x-2 | -11 | -1 | 1 | 11 |
x | -9 | 1 | 3 | 13 |
4) Ta có x2-x+2=(x-1)2-x
=> x chia hết cho x-1
Ta có x=x-1+1
=> 1 chia hết cho x+1
=> x+1 thuộc Ư (1)={-1;1}
Nếu x+1=-1 => x=-2
Nếu x+1=1 => x=0
5) Ta có x2+2x+4=(x+2)2-2x
=> 2x chia hết cho x+1
Ta có 2x=2(x+1)-2
=> x+1 thuộc Ư (2)={-2;-1;1;2}
Ta có bảng
x+1 | -2 | -1 | 1 | 2 |
x | -3 | -2 | 0 | 1 |
Tìm x thuộc Z biết :
a) x - 5 chia hết cho x + 2
b) 2x + 1 chia hết cho 2x - 1
c) (x+5) - 3.(x+5) +2 chia hết cho x + 5
d) x+1 chia hết cho x + 2
a)Ta có : \(x-5⋮x+2=>x-5-\left(x+2\right)⋮x-2=>-7⋮x-2\)
\(=>x-2\inƯ\left(7\right)\left\{-7;-1;1;7\right\}\)
\(=>x\in\left\{-5;1;3;9\right\}\)
b)Ta có : \(2x+1⋮2x-1=>2x+1-\left(2x-1\right)⋮2x-1=>2⋮2x-1\)
\(=>2x-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
\(=>2x\in\left\{-1;0;2;3\right\}\)
\(=>x\in\left\{0;1\right\}\)(vì \(x\in Z\))
c)\(\left(x+5\right)-3\left(x+5\right)+2⋮x+5=>2⋮x+5=>x+5\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
\(=>x\in\left\{-7;-6;-4;-3\right\}\)
d)\(x+1⋮x+2=>x+2-1⋮x+2\)
\(=>1⋮x+2=>x+2\inƯ\left(1\right)=\left\{1;-1\right\}=>x\in\left\{-1;-3\right\}\)
Cho đa thức B(x) = 2\(x^{^{ }2}\)-4x + 3. Tính B(3), B(-\(\dfrac{1}{2}\) )
Cho đa thức M(x) = 7\(x^3\)- 3\(x^4\)- \(x^2\) + 3\(x^2\)- \(x^3\)- 3\(x^4\)- 6\(x^3\)
Cho đa thức N(x) = 3x - 5\(x^3\) + 8\(x^2\)- 5x + 5\(x^3\) + 5
B(3)=2*3^2-4*3+3=18-12+3=9
B(-1/2)=2*1/4-4*(-1/2)+3=1/2+3+2=1/2+5=11/2
Bài 4: Tìm số nguyên x, sao cho:
1. x+5 chia hết cho x+2
2. x-3 chia hết cho x+2
3. 2x-7 chia hết cho x-2
4. x+1 chia hết cho x-5
*Nhanh+đủ = 5 tick
3, 2x - 7 chia hết cho x - 2
Mà x - 2 chia hết cho x - 2 => 2(x - 2) chia hết cho x - 2
=> (2x - 7) - 2(x - 2) chia hết cho x - 2
=> 2x - 7 - 2x + 2 chia hết cho x - 2
=> 9 chia hết cho x - 2
=> x - 2 thuộc {1; -1; 3; -3; 9; -9}
=> x thuộc {3; 1; 5; -1; 11; -7}
Vậy...
1, x + 5 chia hết cho x + 2
=> x + 2 + 3 chia hết cho x + 2
=> 3 chia hết cho x + 2 (Vì x + 2 chia hết cho x + 2)
=> x + 2 thuộc {1; -1; 3; -3}
=> x thuộc {-1; -3; 1; -5}
Vậy...
2, x - 3 chia hết cho x + 2
=> x + 2 - 5 chia hết cho x + 2
=> 5 chia hết cho x + 2
=> x + 2 thuộc {1; -1; 5; -5}
=> x thuộc {-1; -3; 3; -7}
Vậy...
Bai
1. x + 5 chia het x + 2
Suy ra x + 2 + 3 chia het cho x + 2
Vi x + 2 chia het cho x + 2
Suy ra 3 chia het cho x + 2 ; x + 2 thuoc { 1;3;-1;-3}
Suy ra x thuoc : { -1;1;-3;-5}
tìm x en biết
a, x + 12 CHIA HẾT CHO x - 4
b, 2.x + 5 chia hết cho x - 1
c, 2 .x + 6 chia hết cho 2 . x - 1
d , 3 . x + 7 chia hết cho 2 . x - 2
e , 5 . x + 12 chia hết cho x - 3
`**x in NN`
`a)x+12 vdots x-4`
`=>x-4+16 vdots x-4`
`=>16 vdots x-4`
`=>x-4 in Ư(16)={+-1,+-2,+-4,+-16}`
`=>x in {3,5,6,2,20}` do `x in NN`
`b)2x+5 vdots x-1`
`=>2x-2+7 vdots x-1`
`=>7 vdots x-1`
`=>x-1 in Ư(7)={+-1,+-7}`
`=>x in {0,2,8}` do `x in NN`
`c)2x+6 vdots 2x-1`
`=>2x-1+7 vdots 2x-1`
`=>7 vdots 2x-1`
`=>2x-1 in Ư(7)={+-1,+-7}`
`=>2x in {0,2,8,-6}`
`=>x in {0,1,4}` do `x in NN`
`d)3x+7 vdots 2x-2`
`=>6x+14 vdots 2x-2`
`=>3(2x-2)+20 vdots 2x-2`
`=>2x-2 in Ư(20)={+-1,+-2,+-4,+-5,+-10,+-20}`
Vì `2x-2` là số chẵn
`=>2x-2 in {+-2,+-4,+-10,+-20}`
`=>x-1 in {+-1,+-2,+-5,+-10}`
`=>x in {0,2,3,6,11}` do `x in NN`
Thử lại ta thấy `x=0,x=2,x=6` loại
`e)5x+12 vdots x-3`
`=>5x-15+17 vdots x-3`
`=>x-3 in Ư(17)={+-1,+-17}`
`=>x in {2,4,20}` do `x in NN`
a) Ta có: \(x+12⋮x-4\)
\(\Leftrightarrow16⋮x-4\)
\(\Leftrightarrow x-4\inƯ\left(16\right)\)
\(\Leftrightarrow x-4\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
hay \(x\in\left\{5;3;6;2;8;0;12;-4;20;-12\right\}\)
Vậy: \(x\in\left\{0;5;3;6;2;8;20\right\}\)
b) Ta có: \(2x+5⋮x-1\)
\(\Leftrightarrow7⋮x-1\)
\(\Leftrightarrow x-1\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{2;0;8;-6\right\}\)
Vậy: \(x\in\left\{0;2;8\right\}\)
c) Ta có: \(2x+6⋮2x-1\)
\(\Leftrightarrow7⋮2x-1\)
\(\Leftrightarrow2x-1\inƯ\left(7\right)\)
\(\Leftrightarrow2x-1\in\left\{1;-1;7;-7\right\}\)
\(\Leftrightarrow2x\in\left\{2;0;8;-6\right\}\)
hay \(x\in\left\{1;0;4;-3\right\}\)
Vậy: \(x\in\left\{0;1;4\right\}\)
d) Ta có: \(3x+7⋮2x-2\)
\(\Leftrightarrow6x+14⋮2x-2\)
\(\Leftrightarrow20⋮2x-2\)
\(\Leftrightarrow2x-2\in\left\{1;-1;2;-2;4;-4;5;-5;10;-10;20;-20\right\}\)
\(\Leftrightarrow2x\in\left\{3;1;4;0;6;-2;7;-3;12;-8;22;-18\right\}\)
\(\Leftrightarrow x\in\left\{\dfrac{3}{2};\dfrac{1}{2};2;0;3;-1;\dfrac{7}{2};-\dfrac{3}{2};6;-4;11;-9\right\}\)
Vậy: \(x\in\left\{2;0;3;6;11\right\}\)
e) Ta có: \(5x+12⋮x-3\)
\(\Leftrightarrow27⋮x-3\)
\(\Leftrightarrow x-3\in\left\{1;-1;3;-3;9;-9;27;-27\right\}\)
\(\Leftrightarrow x\in\left\{4;2;6;0;12;-6;30;-24\right\}\)
Vậy: \(x\in\left\{4;2;6;0;12;30\right\}\)
Giải:
a) \(x+12⋮x-4\)
\(\Rightarrow x-4+16⋮x-4\)
\(\Rightarrow16⋮x-4\)
\(\Rightarrow x-4\inƯ\left(16\right)=\left\{\pm1;\pm2;\pm4;\pm8;\pm16\right\}\)
Ta có bảng giá trị:
x-4 | -16 | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 | 16 |
x | -12 (loại) | -4 (loại) | 0 (t/m) | 2 (t/m) | 3 (t/m) | 5 (t/m) | 6 (t/m) | 8 (t/m) | 12 (t/m) | 20 (t/m) |
Vậy \(x\in\left\{0;2;3;5;6;8;12;20\right\}\)
b) \(2x+5⋮x-1\)
\(\Rightarrow2x-2+7⋮x-1\)
\(\Rightarrow7⋮x-1\)
\(\Rightarrow x-1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta có bảng giá trị:
x-1 | -7 | -1 | 1 | 7 |
x | -6 (loại) | 0 (t/m) | 2 (t/m) | 8 (t/m) |
Vậy \(x\in\left\{0;2;8\right\}\)
c) \(2x+6⋮2x-1\)
\(\Rightarrow2x-1+7⋮2x-1\)
\(\Rightarrow7⋮2x-1\)
\(\Rightarrow2x-1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta có bảng giá trị:
2x-1 | -7 | -1 | 1 | 7 |
x | -3 (loại) | 0 (t/m) | 1 (t/m) | 4 (t/m) |
Vậy \(x\in\left\{0;1;4\right\}\)
d) \(3x+7⋮2x-2\)
\(\Rightarrow6x-6+20⋮2x-2\)
\(\Rightarrow20⋮2x-2\)
\(\Rightarrow2x-2\inƯ\left(20\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm10;\pm20\right\}\)
Vì \(2x-2\) là số chẵn nên \(2x-2\in\left\{\pm2;\pm4;\pm10;\pm20\right\}\)
Ta có bảng giá trị:
2x-2 | -20 | -10 | -4 | -2 | 2 | 4 | 10 | 20 |
x | -9 (loại) | -4 (loại) | -1 (loại) | 0 (t/m) | 2 (t/m) | 3 (t/m) | 6 (t/m) | 11 (t/m) |
Vậy \(x\in\left\{0;2;3;6;11\right\}\)
e) \(5x+12⋮x-3\)
\(\Rightarrow5x-15+27⋮x-3\)
\(\Rightarrow27⋮x-3\)
\(\Rightarrow x-3\inƯ\left(27\right)=\left\{\pm1;\pm3;\pm9;\pm27\right\}\)
Ta có bảng giá trị:
x-3 | -27 | -9 | -3 | -1 | 1 | 3 | 9 | 27 |
x | -24 (loại) | -6 (loại) | 0 (t/m) | 2 (t/m) | 4 (t/m) | 6 (t/m) | 12 (t/m) | 30 (t/m) |
Vậy \(x\in\left\{0;2;4;6;12;30\right\}\)
tìm x thuộc Z
a/ 3x+2 chia hết cho x-1
b/ 3x+24 chia hết cho x-4
c/x^2+5 chia hết cho x+1
d/ x^2-5x+1 chia hết cho x-5
3+5/x-1
3+36/x-4
x+1+4/x+1
x+1/x-5
a: 3x+2 chia hết cho x-1
=>3x-3+5 chia hết cho x-1
=>5 chia hết cho x-1
=>x-1 thuộc {1;-1;5;-5}
=>x thuộc {2;0;6;-4}
b: 3x+24 chia hết cho x-4
=>3x-12+36 chia hết cho x-4
=>36 chia hết cho x-4
=>x-4 thuộc {1;-1;2;-2;3;-3;4;-4;6;-6;9;-9;12;-12;18;-18;36;-36}
=>x thuộc {5;3;6;2;7;1;8;0;10;-2;13;-5;16;-8;22;-14;40;-32}
c: x^2+5 chia hết cho x+1
=>x^2-1+6 chia hết cho x+1
=>x+1 thuộc {1;-1;2;-2;3;-3;6;-6}
=>x thuộc {0;-2;1;-3;2;-4;5;-7}
d: x^2-5x+1 chia hết cho x-5
=>1 chia hết cho x-5
=>x-5 thuộc {1;-1}
=>x thuộc {6;4}
1) 2x + 5 chia hết cho x + 2
2) 3x + 5 chia hết cho x - 2
3) 6x + 7 chia hết cho 2x - 1
4) 4 - x chia hết cho x + 3
5) x - 3 chia hết cho x + 1
6) x2 - x + 2 chia hết cho x - 1
1) ta có 2x+5=2(x+2)+1
vì 2(x+2) chia hết cho x+2 nên để 2(x+2)+1 chia hết cho x+2 thì 1 chia hết cho x+2
hay x+2 là ước của 1
ta có Ư(1)=-1,1
nếu x+2=1 thì x=-1
nếu x+2=-1 thì x=-3
2) ta có 3x+5=3(x-2)+11
vì 3(x-2) chia hết cho x-2 nên để 3(x-2)+11 thì 11 chia hết cho x-2 hay x-2 là ước của 11
ta có Ư(11)=-11;-1;1;11
nếu x-2=-11 thì x=-9
nếu x-2=-1 thì x=1
nếu x-2=1 thì x=3
nếu x-2=11 thì x=12
các câu còn lại tương tự .cho mình **** nha
Tìm stn x để
a) [(x-2)2+3] chia hết cho (x-2) (với x khác 2)
b) [7(x-5)2+10] chia hết cho (x-5) (với x khác 5)
a. (x-2)2+3 chia hết cho (x-2)
mà (x-2)2 chia hết cho (x-2)
=> 3 chia hết cho (x-2)
=> \(x-2\inƯ\left(3\right)=\left\{1;3\right\}\)
=>\(x\in\left\{3;5\right\}\).
b. 7(x-5)2+10 chia hết cho (x-5)
mà 7(x-5)2 chia hết cho (x-5)
=> 10 chia hết cho (x-5)
=> \(x-5\inƯ\left(10\right)=\left\{1;2;5;10\right\}\)
=>\(x\in\left\{6;7;10;15\right\}\).