Tìm GTLN của biểu thức M=\(\frac{6}{|x|-3}\)
tìm GTLN của biểu thức sau :M =\(\frac{6}{X-2\sqrt{X}+3}\)
Ta có \(X-2\sqrt{X}+3\)
\(=\sqrt{X}^2+2\times\sqrt{X}\times1+1^2+2\)
\(=\left(\sqrt{X}+1\right)^2+2\)
Ta lại có \(\left(\sqrt{X}+1\right)^2\ge0,\forall X\)
\(\Rightarrow P\le3.\)Dấu"=" xảy ra khi \(\sqrt{X}+1=0\)\(\Leftrightarrow X=1\)
Vậy MaxP=3<=>X=1
Ta có X-2\sqrt{X}+3X−2X+3
=\sqrt{X}^2+2\times\sqrt{X}\times1+1^2+2=X2+2×X×1+12+2
=\left(\sqrt{X}+1\right)^2+2=(X+1)2+2
Ta lại có \left(\sqrt{X}+1\right)^2\ge0,\forall X(X+1)2≥0,∀X
\Rightarrow P\le3.⇒P≤3.Dấu"=" xảy ra khi \sqrt{X}+1=0X+1=0\Leftrightarrow X=1⇔X=1
Vậy Max P=3<=>X=1
Cho biểu thức \(M=\left(1-\frac{6-2x^3}{x^6-9}\right).\frac{4}{x^5+3x^2}:\left(\frac{6x^6-24}{x^9+6x^6+9x^3}:\left(\frac{3x^2}{2}+\frac{3}{x}\right)\right)\)
a/ Rút gọn M
b/ Tìm các giá trị nguyên của x để M đạt GTLN. Tìm GTLN đó
a) Tìm GTLN của biểu thức A = ( 2x+ \(\frac{1}{3}\))4 -1
b) Tìm GTLN của biểu thức B = - (\(\frac{4}{9}\)x - \(\frac{2}{15}\)) 6 +3
Ta có:
(2x + \(\frac{1}{3}\))4 \(\ge\) 0 \(\forall\) x \(\in\) Z
=> (2x + \(\frac{1}{3}\))4 - 1 \(\ge\) -1 \(\forall\) x \(\in\) Z
=> A \(\ge\) -1 \(\forall\) x \(\in\) Z
Dấu "=" xảy ra khi (2x + \(\frac{1}{3}\))4 = 0
=> 2x + \(\frac{1}{3}\) = 0
=> 2x = 0 - \(\frac{1}{3}\)
=> 2x = \(\frac{-1}{3}\)
=> x = \(\frac{-1}{6}\)
Vậy GTNN của A = -1 khi x = \(\frac{-1}{6}\).
b) Lại có:
- (\(\frac{4}{9}\)x - \(\frac{2}{15}\))6 \(\le\) 0 \(\forall\) x \(\in\) Z
=> - (\(\frac{4}{9}\)x - \(\frac{2}{15}\))6 + 3 \(\le\) 3 \(\forall\) x \(\in\) Z
=> B \(\le\) 3 \(\forall\) x \(\in\) Z
Dấu "=" xảy ra khi:
(\(\frac{4}{9}\)x - \(\frac{2}{15}\))6 = 0
=> \(\frac{4}{9}\)x - \(\frac{2}{15}\) = 0
=> \(\frac{4}{9}\)x = \(\frac{2}{15}\)
=> x = \(\frac{2}{15}\) : \(\frac{4}{9}\)
=> x = \(\frac{3}{10}\)
Vậy GTLN của B = 3 khi x = \(\frac{3}{10}\)
a)Ta thấy: \(\left(2x+\frac{1}{3}\right)^4\ge0\)
\(\Rightarrow\left(2x+\frac{1}{3}\right)^4-1\ge-1\)
\(\Rightarrow A\ge-1\)
Dấu "=" xảy ra khi \(\left(2x+\frac{1}{3}\right)^4=0\Leftrightarrow x=-\frac{1}{6}\)
Vậy \(Min_A=-1\) khi \(x=-\frac{1}{6}\)
b)Ta thấy:\(\left(\frac{4}{9}x-\frac{2}{15}\right)^6\ge0\)
\(\Rightarrow-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\le0\)
\(\Rightarrow-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\le3\)
\(\Rightarrow B\le3\)
Dấu "=" xảy ra khi \(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6=0\Rightarrow x=\frac{3}{10}\)
Vậy \(Max_B=3\) khi \(x=\frac{3}{10}\)
Cho biểu thức M =\(\left[\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right]:\left(x-2+\frac{10-x^2}{x+2}^{ }\right)\)
A. Rút gọn M
B. Tìm x nguyên để M đạt GTLN
\(ĐKXĐ:x\ne0;x\ne\pm2\)
a) \(M=\left[\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right]:\left(x-2+\frac{10-x^2}{x+2}\right)\)
\(\Leftrightarrow M=\left[\frac{x^2}{x\left(x-2\right)\left(x+2\right)}-\frac{6}{3\left(x-2\right)}+\frac{1}{x+2}\right]:\frac{\left(x-2\right)\left(x+2\right)+10-x^2}{x+2}\)
\(\Leftrightarrow M=\frac{3x^2-6x\left(x+2\right)+3x\left(x-2\right)}{3x\left(x-2\right)\left(x+2\right)}:\frac{x^2-4+10-x^2}{x+2}\)
\(\Leftrightarrow M=\frac{3x^2-6x^2-12x+3x^2-6x}{3x\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)
\(\Leftrightarrow M=\frac{-18x\left(x+2\right)}{18x\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow M=-\frac{1}{x-2}\)
\(\Leftrightarrow M=\frac{1}{2-x}\)
b) Để M đạt giá trị lớn nhất
\(\Leftrightarrow2-x\)đạt giá trị nhỏ nhất
\(\Leftrightarrow x\)đạt giá trị lớn nhất
Vậy để M đạt giá trị lớn nhất thì x phải đạt giá trị lớn nhất \(\left(x\inℤ\right)\)
玉明, bạn làm sai rồi. Dấu ngoặc vuông là dấu phần nguyên không phải dấu ngoặc thường
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
Tìm GTLN của biểu thức sau :
\(B=-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\)
6 là số chẵn nên \(-\left[\frac{4}{9}x-\frac{2}{15}\right]^6\le0\)
=> B ≥ 3
=> GTLN của B = 3 khi x = 3/10
Tìm GTLN của biểu thức M\(=\frac{1}{\left|x-3\right|+4}\)
Ta có:\(M=\frac{1}{\left|x-3\right|+4}\) lớn nhất\(\Leftrightarrow\left|x-3\right|+4\) nhỏ nhất
Mà \(\left|x-3\right|\ge0\Rightarrow\left|x-3\right|+4\ge4\)
\(\Rightarrow M\le\frac{1}{4}\)
Vậy GTLN M là \(\frac{1}{4}\Leftrightarrow x=3\)