Ôn tập toán 7

TN

a) Tìm GTLN của biểu thức A = ( 2x+ \(\frac{1}{3}\))4 -1

b) Tìm GTLN của biểu thức B = - (\(\frac{4}{9}\)x - \(\frac{2}{15}\)) 6 +3

HA
20 tháng 1 2017 lúc 0:02

Ta có:

(2x + \(\frac{1}{3}\))4 \(\ge\) 0 \(\forall\) x \(\in\) Z

=> (2x + \(\frac{1}{3}\))4 - 1 \(\ge\) -1 \(\forall\) x \(\in\) Z

=> A \(\ge\) -1 \(\forall\) x \(\in\) Z

Dấu "=" xảy ra khi (2x + \(\frac{1}{3}\))4 = 0

=> 2x + \(\frac{1}{3}\) = 0

=> 2x = 0 - \(\frac{1}{3}\)

=> 2x = \(\frac{-1}{3}\)

=> x = \(\frac{-1}{6}\)

Vậy GTNN của A = -1 khi x = \(\frac{-1}{6}\).

b) Lại có:

- (\(\frac{4}{9}\)x - \(\frac{2}{15}\))6 \(\le\) 0 \(\forall\) x \(\in\) Z

=> - (\(\frac{4}{9}\)x - \(\frac{2}{15}\))6 + 3 \(\le\) 3 \(\forall\) x \(\in\) Z

=> B \(\le\) 3 \(\forall\) x \(\in\) Z

Dấu "=" xảy ra khi:

(\(\frac{4}{9}\)x - \(\frac{2}{15}\))6 = 0

=> \(\frac{4}{9}\)x - \(\frac{2}{15}\) = 0

=> \(\frac{4}{9}\)x = \(\frac{2}{15}\)

=> x = \(\frac{2}{15}\) : \(\frac{4}{9}\)

=> x = \(\frac{3}{10}\)

Vậy GTLN của B = 3 khi x = \(\frac{3}{10}\)

Bình luận (0)
LF
20 tháng 1 2017 lúc 0:12

a)Ta thấy: \(\left(2x+\frac{1}{3}\right)^4\ge0\)

\(\Rightarrow\left(2x+\frac{1}{3}\right)^4-1\ge-1\)

\(\Rightarrow A\ge-1\)

Dấu "=" xảy ra khi \(\left(2x+\frac{1}{3}\right)^4=0\Leftrightarrow x=-\frac{1}{6}\)

Vậy \(Min_A=-1\) khi \(x=-\frac{1}{6}\)

b)Ta thấy:\(\left(\frac{4}{9}x-\frac{2}{15}\right)^6\ge0\)

\(\Rightarrow-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\le0\)

\(\Rightarrow-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\le3\)

\(\Rightarrow B\le3\)

Dấu "=" xảy ra khi \(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6=0\Rightarrow x=\frac{3}{10}\)

Vậy \(Max_B=3\) khi \(x=\frac{3}{10}\)

Bình luận (0)
TN
19 tháng 1 2017 lúc 23:46

a) GTNN nhé mk viết lộn

Bình luận (0)

Các câu hỏi tương tự
HN
Xem chi tiết
MR
Xem chi tiết
PU
Xem chi tiết
NT
Xem chi tiết
DN
Xem chi tiết
NH
Xem chi tiết
LV
Xem chi tiết
TN
Xem chi tiết
PT
Xem chi tiết