Những câu hỏi liên quan
NL
Xem chi tiết
PA
Xem chi tiết
DL
Xem chi tiết
LN
Xem chi tiết
NT
Xem chi tiết
NH
30 tháng 7 2019 lúc 20:41

là mày hả

Bình luận (0)
NT
Xem chi tiết
ND
17 tháng 8 2019 lúc 10:27

Đặt \(\hept{\begin{cases}x+y=m\\x+z=n\end{cases}\left(m,n\ne0\right)}\). Khi đó giả thiết trở thành:

\(\hept{\begin{cases}\frac{a}{m}=\frac{13}{n}\left(1\right)\\\frac{169}{n^2}=\frac{27}{\left(m-n\right)\left(m+n\right)}\left(2\right)\end{cases}}\)

Từ đẳng thức (2) suy ra \(\frac{169}{n^2}=\frac{27}{m^2-n^2}\Rightarrow169m^2=196n^2\Leftrightarrow\orbr{\begin{cases}13m=14n\\13m=-14n\end{cases}}\)(Vì m,n khác 0)

Do đó \(\orbr{\begin{cases}\frac{m}{n}=\frac{14}{13}\\\frac{m}{n}=-\frac{14}{13}\end{cases}}\). Chú ý tới (1) ta có \(\orbr{\begin{cases}a=13.\frac{m}{n}=13.\frac{14}{13}=14\\a=-14\end{cases}}\)

Ta lại có: \(E=\frac{\left(2a^3-4a^2\right)-\left(8a^2-16a\right)+\left(a-2\right)}{a-2}=2a^2-8a+1\)

Thay \(a=14\) vào biểu thức E ta được \(E=2.14^2-8.14+1=281\)

Thay \(a=-14\)vào biểu thức E ta được \(E=2.\left(-14\right)^2-8.\left(-14\right)+1=505\)

Vậy \(E=281\)hoặc \(E=505.\)

Bình luận (0)
HH
Xem chi tiết
VA
Xem chi tiết
H24
Xem chi tiết
NT
23 tháng 12 2020 lúc 21:54

a) Ta có: \(\dfrac{a}{2}=\dfrac{b}{3}\)

\(\Leftrightarrow\dfrac{a}{8}=\dfrac{b}{12}\)(1)

Ta có: \(\dfrac{b}{4}=\dfrac{c}{5}\)

nên \(\dfrac{b}{12}=\dfrac{c}{15}\)(2)

Từ (1) và (2) suy ra \(\dfrac{a}{8}=\dfrac{b}{12}=\dfrac{c}{15}\)

mà a+b+c=2 

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{8}=\dfrac{b}{12}=\dfrac{c}{15}=\dfrac{a+b+c}{8+12+15}=\dfrac{2}{35}\)

Do đó: 

\(\left\{{}\begin{matrix}\dfrac{a}{8}=\dfrac{2}{35}\\\dfrac{b}{12}=\dfrac{2}{35}\\\dfrac{c}{15}=\dfrac{2}{35}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{16}{35}\\b=\dfrac{24}{35}\\c=\dfrac{30}{35}=\dfrac{6}{7}\end{matrix}\right.\)

Vậy: \(a=\dfrac{16}{35}\)\(b=\dfrac{24}{35}\)\(c=\dfrac{6}{7}\)

b) Ta có: 2a=3b=5c

nên \(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{\dfrac{1}{5}}\)

mà a+b-c=3

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được: 

\(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{\dfrac{1}{5}}=\dfrac{a+b-c}{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}}=\dfrac{3}{\dfrac{19}{30}}=\dfrac{90}{19}\)

Do đó: 

\(\left\{{}\begin{matrix}2a=\dfrac{90}{19}\\3b=\dfrac{90}{19}\\5c=\dfrac{90}{19}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{45}{19}\\b=\dfrac{30}{19}\\c=\dfrac{18}{19}\end{matrix}\right.\)

Vậy: \(a=\dfrac{45}{19}\)\(b=\dfrac{30}{19}\)\(c=\dfrac{18}{19}\)

Bình luận (0)