Những câu hỏi liên quan
PM
Xem chi tiết
HH
13 tháng 12 2015 lúc 22:53

\(\sqrt{28n^2+1}=k\)

\(A=2k+2=4\left(\frac{k+1}{2}\right)\)

\(k^2=28n^2+1\)

\(k^2-1=28n^2\)

\(\frac{k^2-1}{28}=n^2\)

Suy ra\(k^2-1\)chia hết cho 7 vì tử nguyên mẫu nguyên mà thương cũng nguyên nên tử chia hết cho mẫu mà 28 chia hết cho 7

\(k^2\equiv1\left(mod7\right)\)

\(k\equiv1\)(mod7)

k-1 chia hết cho 7

Có \(n^2=\frac{k^2-1}{28}=\left(\frac{k-1}{14}\right)\left(\frac{k+1}{2}\right)\)

2 số trên nguyên tố cùng nhau

mà tích là số chính phương nên 2 số trên đều là số chính phương

(k+1)/2 chính phương

\(A=4\left(\frac{k+1}{2}\right)\)tích 2 số cp nên a cp

 

Bình luận (0)
HH
Xem chi tiết
NK
13 tháng 12 2015 lúc 22:41

tick tui 2 cái cho đủ 200

Bình luận (0)
H24
Xem chi tiết
H24
13 tháng 6 2021 lúc 17:07

Bài này là đề tuyển sinh vào 10 của hà nội năm 2012 nếu mình không nhớ nhầm.

Bạn tìm trên mạng nhé.

Bình luận (0)
 Khách vãng lai đã xóa
H24
13 tháng 6 2021 lúc 17:21

Không thấy bạn ơi

Bình luận (0)
 Khách vãng lai đã xóa
TL
Xem chi tiết
DH
7 tháng 2 2017 lúc 17:27

Đặt \(M=2+2\sqrt{12n^2+1}\)

Để M là số nguyên thì 12n2 + 1  là số chính phương lẻ 
Đặt 12n2 + 1 = (2k -1)2   (k \(\in\) N)

<=> 12n2 + 1 = 4k- 4k +1

<=> 12n2 = 4k2 - 4k 

<=> 3n2 = k(k - 1)

=> k(k - 1) chia hết cho 3 => k chia hết cho 3 hoặc k - 1 chia hết cho 3

TH1 : k ⋮ 3 => n=(\(\frac{k}{3}\)).(k - 1)     Mà (\(\frac{k}{3}\) ; k-1 )= 1 nên đặt \(\frac{k}{3}\) = x2 => k = 3x2

  và đặt k - 1 = y=> k = y2 +1

  => 3x= y2 + 1 = 2 ( mod 3)

  Vô lý vì 1 số chính phương chia cho 3 có số dư là 0 hoặc 1

TH2 : k - 1 ⋮ 3: ta có :

  => n2 = \(\frac{k\left(k-1\right)}{3}\)     Mà ( k; (\(\frac{k-1}{3}\)) =1 nên đặt k = z2 

=> M = 2 + 2(2k - 1) = 4k = 4z2 =(2z)2 là 1 số chính phương 

 => M là một số chính phương ( đpcm )

Bình luận (0)
TN
28 tháng 4 2017 lúc 18:10

\(2+2\sqrt{12n^2+1}\in Z^+\Rightarrow2\sqrt{12n^2+1}\in Z^+\Rightarrow\sqrt{12n^2+1}\in Q\)

\(\Rightarrow\sqrt{12n^2+1}=m\in Z^+\Rightarrow12n^2=m^2-1⋮4\Rightarrow m=2k+1,k\in Z\)

\(12n^2=\left(2k+1\right)^2-1=4k\left(k+1\right)\Rightarrow3n^2=k\left(k+1\right)⋮3\)hoặc \(k+1⋮3\)

TH1: \(k=3q,q\in Z\Rightarrow3n^2=3q\left(q+1\right)\Rightarrow n^2=q\left(q+1\right)\)

Vì \(\left(q,3q+1\right)=1\Rightarrow\hept{\begin{cases}q=a^2\\3q+1=b^2\end{cases}\Rightarrow3q^2+1=b^2}\)

Ta có: \(2+2\sqrt{12n^2+1}=2+2m=2+2\left(2k+1\right)=4+4.3q=4+12q^2=4b^2\)(CMT)

Ta có đpcm

TH2(tương tự):\(k=3q+1\)

Bình luận (0)
H24
7 tháng 2 2017 lúc 17:57

Bước 1: mình chưa hiểu \(M=2+2.\sqrt{12n^2+1}\) Nguyên thì \(\sqrt{12n^2+1}\) phải lẻ nếu chẵn thì sao?

Bình luận (0)
H24
Xem chi tiết
NL
2 tháng 6 2021 lúc 17:55

\(\dfrac{a}{b}-1=\dfrac{a^2+n^2}{b^2+n^2}-1\Rightarrow\dfrac{a-b}{b}=\dfrac{\left(a-b\right)\left(a+b\right)}{b^2+n^2}\)

TH1: \(a=b\) thì \(ab=a^2\) là SCP

TH2: \(a\ne b\Rightarrow\dfrac{1}{b}=\dfrac{a+b}{b^2+n^2}\)

\(\Rightarrow b^2+n^2=b\left(a+b\right)\Rightarrow ab=n^2\) là SCP

Bình luận (0)
TN
Xem chi tiết
H24
Xem chi tiết
H24
11 tháng 12 2022 lúc 16:07

Bài 2: 

Ta có: 2a2+2b2=(a2+2ab+b2)+(a2-2ab+b2)

                        =(a+b)2+(a-b)2 là tổng 2 số chính phương

⇒2a2+2b2 là tổng của 2 số chính phương(đpcm)

Bình luận (0)
QH
Xem chi tiết
LL
Xem chi tiết
PL
2 tháng 12 2016 lúc 19:50

a) Nếu n2+2014 là số chính phương với n nguyên dương thì n2 + 2014 = k2 → k2 – n2 = 2014

=> (k – n)(k + n) = 2014 (*)

Vậy (k + n) – (k – n) = 2n là số chẵn nên k và n phải cùng chẵn hoặc cùng lẻ.

Mặt khác (k – n)(k + n) = 2014 là chẵn

Nên (k – n), (k + n) đều chia hết cho 2 hay (k – n)(k + n) chia hết cho 4

Mà 2014 không chia hết cho 4

Suy ra đẳng thức (*) không thể xảy ra.

Vậy không có số nguyên dương n nào để số n2 + 2014 là số chính phương

b) Với 2 số a, b dương:

Xét: a2 + b2 – ab ≤ 1

<=> (a + b)(a2 + b2 – ab) ≤ (a + b) (vì a + b > 0)

<=> a3 + b3 ≤ a + b

<=> (a3 + b3)(a3 + b3) ≤ (a + b)(a5 + b5) (vì a3 + b3 = a5 + b5)

<=> a6 + 2a3b3 + b6 ≤ a6 + ab5 + a5b + b6

<=> 2a3b3 ≤ ab5 + a5b

<=> ab(a4 – 2a2b2 + b4) ≥ 0

<=> ab(a2 - b2) ≥ 0 đúng ∀ a, b > 0 .

Vậy: a2 + b2 ≤ 1 + ab với a, b dương và a3 + b3 = a5 + b5

Bình luận (2)