Những câu hỏi liên quan
WG
Xem chi tiết
WG
10 tháng 7 2018 lúc 20:36

xin lỗi mik ghi sai đề

Bình luận (0)
BD
Xem chi tiết
HA
16 tháng 4 2018 lúc 21:48

Xét dãy 2003 số: 2001;20012001;.........; 2001...2001 trong 2003 số trên sẽ có 2 số đồng dư khi chia 2002
gọi 2 số đó là A = 2001..2001, và B = 2001...2001...
(trong đó A có a số 2001, B có b số 2001 và a> b hay a = b+k)
=> hiệu of chúng chia hết 2002
=> 2001....200100000...0 chia hết 2002..(ko số 2001 và b số 0)

Bình luận (0)
HN
Xem chi tiết
VD
Xem chi tiết
KV
3 tháng 2 2019 lúc 19:58

Xét dãy số : 1978, 19781978, ...., 19781978...1978 ( 2013 số 1978 ). Khi chia các số hạng của dãy này cho 2012 sẽ có hai phép chia có cùng số dư. Gỉa sử hai số hạng của dãy trong hai phép chia đó là a = 19781978.....1978 ( m số 1978 ) và b = 19781978.....1978 (n số 1978 )

( với \(1\le n< m\le2013\) )

=> Hiệu của a và b chia hết cho 2012 hay a - b = 19781978....1978 00...0 chia hết cho 12 => ( đpcm )

                                                                                 ( m - n số 1978 )    ( 4n chữ số 0 )

Bình luận (0)
DM
Xem chi tiết
AT
12 tháng 6 2021 lúc 19:19

Bạn xem lại đề nhé, phải là chứng minh rằng có thể tìm được một số tự nhiên dạng 20152015...2015 chia hết cho 41

Chọn 41 số dạng 20152015...2015 khác nhau.

Nếu có 1 số trong nhóm chia hết cho 41. => đpcm

Nếu ko có số nào chia hết cho 41 thì theo nguyên lý Directle thì có ít nhất một cặp số (A;B) có cùng số dư khi chia cho 41.

Khi đó hiệu A - B = 20152015...201500...000 = 20152015...2015 (tạm gọi =C) x 1000...000 sẽ chia hết cho 41.

Mà 1000...000 không chia hết chết cho 41 nên C = 20152015...2015 sẽ chia hết cho 41. Nên C là số cần tìm.

Vậy, luôn tìm được ít nhất 1 số tự nhiên dạng 20152015...2015 chia hết cho 41.

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
SX
3 tháng 6 2016 lúc 7:52

- xét dãy số gom  2002 số hạng sau :

2003, 2003.... 2003 , 2003 ... 2003

2002 lan 2003 

chia tất cả số hạng của dãy số 2002 có 2002 số dư từ 1 đến 2002[ ko thể có số dư 0 vì các số hạng là số lẻ ]

có 2002 phép chia nên theo nguyên tắc dirichlet  phải có ít nhất 2 số có cùng số dư khi chia 2002

giả sử 2 số đó là am và an [m,n N];  1< = m

voi am = 2003 2003... 2003; an = 2003 2003 ... 2003

ta có :[an- am] chia het cho 2002

hay 2003 2003.... 2003 00 ...00 luon chia het cho 2002

vậy tồn tại có một số dạng 2003 2003 ... 20032003 ..... 200300 ...0 chia het cho 2002

k mk nha

Bình luận (0)
LT
Xem chi tiết
NA
Xem chi tiết
NB
Xem chi tiết
NT
10 tháng 4 2016 lúc 23:08

Khi chia một số cho 2002 có tất cả 2002 số dư từ 0 đến 2001;

Xét dãy gồm 2003 số: 2003; 20032003; 200320032003, ...;200320032003...(gồm 2003 số 2003). khi chia các số trong dãy trên cho 2002 thì theo N.L Dirichle có ít nhất hai số chia cho 2002 có cùng số dư, nên hiệu của chúng chia hết cho 2002. Gọi hai số đó là 20032003...2003(gồm m số 2003) và 20032003...2003(gồm n số 2003), giả sử m<n, ta có:

20032003...2003(gồm n số 2003) - 20032003...2003(gồm m số 2003) Chia hết cho 2002

hay 20032003...200300...0(gồm n-m số 2003 và m số 0) chia hết cho 2002. Vậy, tốn tại số có dạng 20032003...200300...0 chia hết cho 2002

Bình luận (0)