30x(x+2)-2x(x-5)-24=30. Hãy tìm x.
Tìm x, biết:
a. -12 . ( x - 5 ) + 7 . ( 3 - x ) = 15
b. 30 . ( x + 2 ) - 5 . ( x - 5 ) - 24 . x = 100
c. ( 30x + 60 ) - ( 6x - 30 ) - 24x = 100
( giải chi tiết nha )
a. -12 (x-5) +7(3-x) = -12x+60+21-7x=-19x+81=15
=> -19x=15-81=-66
=> x=66/19
b. 30(x+2) - 5 (x-5) - 24x = 30x+60-5x+25-24x =(30x-5x-24x)+(60+25)=x+85=100
=> x=100-85=15
c. ( 30x + 60 ) - ( 6x - 30 ) - 24x = 100
=30x+60-6x+30-24x
=90=100 (cô lý)
Vậy không có x thỏa mãn
Tìm x:
1500 : [(30x + 40) : x] = 30
(2x - 15)5 = (2x - 15)3
32x + 2 = 9x + 3
1500: [(30x + 40) : x]=30
=>(30x + 40): x = 1500 : 30
=>30x : x+ 40:x=50
=> 30 + 40 :x=50
=> 40 :x=50-30
=> 40:x=20
=>x=40:20
=>x=2
: [(30x + 40) : x] = 30(2x - 15)5 = (2x - 15)3
=>(30x+40):x=1500 : 30=50
40:x = 50-30
40:x=20
x=2
Phân tích đa thức thành nhân tử:
a/ x4-30x2+31x-30
b/ (x-1)(x-2)(x-3)(x-4)-24
c/ (x+1)(x+3)(x+5)(x+7)-15
b)\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)-24\)4
\(=\left[\left(x-1\right)\left(x-4\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]-24\)
\(=\left(x^2-4x-x+4\right)\left(x^2-3x-2x+6\right)-24\)
\(=\left(x^2-5x+4\right)\left(x^2-5x+4+2\right)-24\)
\(\)Đặt \(x^2-5x+4\)là a,ta có
\(=a\left(a+2\right)-24\)
\(=a^2+2a-24\)
\(=a^2+6a-4a-24\)
\(=a\left(a+6\right)-4\left(a+6\right)\)
\(=\left(a+6\right)\left(a-4\right)\)
Hay \(\left(x^2-5x+4+6\right)\left(x^2-5x+4-4\right)\)
\(=\left(x^2-5x+10\right)\left(x^2-5\right)\)
Câu hỏi của Huỳnh Bảo Nguyên - Toán lớp 8 - Học toán với OnlineMath
Mk làm òi nhé !
Giải phương trình:
`a, (x-1)/2012+(x-2)/2011+(x-3)/2010+...+(x-2012)/1=2012`
`b,x^4-30x^2+31x-30=0`
`c,(2x-5)^3-(x-2)^3=(x-3)^3`
a) Ta có: \(\frac{x-1}{2012}+\frac{x-2}{2011}+\frac{x-3}{2010}+...+\frac{x-2012}{1}=2012\)
\(\Leftrightarrow\frac{x-1}{2012}+\frac{x-2}{2011}+\frac{x-3}{2010}+...+\frac{x-2012}{1}-2012=0\)
\(\Leftrightarrow\frac{x-1}{2012}-1+\frac{x-2}{2011}-1+\frac{x-3}{2010}-1+...+\frac{x-2012}{1}-1=0\)
\(\Leftrightarrow\frac{x-2013}{2012}+\frac{x-2013}{2011}+\frac{x-2013}{2010}+...+\frac{x-2013}{1}=0\)
\(\Leftrightarrow\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+...+1\right)=0\)
mà \(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+...+1>0\)
nên x-2013=0
hay x=2013
Vậy: Tập nghiệm S={2013}
b) Ta có: \(x^4-30x^2+31x-30=0\)
\(\Leftrightarrow x^4+x-30x^2+30x-30=0\)
\(\Leftrightarrow\left(x^4+x\right)-\left(30x^2-30x+30\right)=0\)
\(\Leftrightarrow x\left(x^3+1\right)-30\left(x^2-x+1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left[x\left(x+1\right)-30\right]=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2+x-30\right)=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2+6x-5x-30\right)=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left[x\left(x+6\right)-5\left(x+6\right)\right]=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(x+6\right)\left(x-5\right)=0\)(1)
Ta có: \(x^2-x+1\)
\(=x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Ta có: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
hay \(x^2-x+1>0\forall x\)(2)
Từ (1) và (2) suy ra (x+6)(x-5)=0
\(\Leftrightarrow\left[{}\begin{matrix}x+6=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=5\end{matrix}\right.\)
Vậy: Tập nghiệm S={-6;5}
a)
PT <=> \(\left(\frac{x-1}{2012}-1\right)+\left(\frac{x-2}{2011}-1\right)+...+\left(\frac{x-2012}{1}-1\right)=0\)
<=> \(\frac{x-2013}{2012}+\frac{x-2013}{2011}+...+\frac{x-2013}{1}=0\)
<=> \(\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+...+\frac{1}{1}\right)=0\)
Mà \(\frac{1}{2012}+\frac{1}{2011}+...+\frac{1}{1}\ne0\)
<=> x - 2013 = 0
<=> x = 2013
KL: ...
b) PT <=> \(\left(x^4-5x^3\right)+\left(5x^3-25x^2\right)-\left(5x^2-25x\right)+\left(6x-30\right)=0\)
<=> \(x^3\left(x-5\right)+5x^2\left(x-5\right)-5x\left(x-5\right)+6\left(x-5\right)=0\)
<=> \(\left(x-5\right)\left(x^3+5x^2-5x+6\right)=0\)
<=> \(\left(x-5\right)\left[\left(x^3+6x^2\right)-\left(x^2+6x\right)+\left(x+6\right)\right]=0\)
<=> \(\left(x-5\right)\left[x^2\left(x+6\right)-x\left(x+6\right)+\left(x+6\right)\right]=0\)
<=> \(\left(x-5\right)\left(x+6\right)\left(x^2-x+1\right)=0\)
<=> \(\left[{}\begin{matrix}x=5\\x=-6\\x=\varnothing\end{matrix}\right.\)
KL: ...
b) Đặt 2x - 5 = a; x-2 = b
PT <=> \(a^3-b^3=\left(a-b\right)^3\)
<=> \(a^3-b^3=a^3-3a^2b+3ab^2-b^3\)
<=> \(3a^2b-3ab^2=0\)
<=> \(3ab\left(a-b\right)=0\)
TH1: a = 0
<=> 2x - 5 = 0
<=>\(x=\frac{5}{2}\)
Th2: b = 0
<=> x-2 = 0
<=> x = 2
TH3: a - b = 0
<=> 2x - 5 - (x-2) = 0
<=> x = 3
KL: x \(\in\left\{\frac{5}{2};2;3\right\}\)
Tìm x, biết:
a) 8x3-x=0
b) x(x-5)=2x-10
c) 3x2+30x=-75
a) \(8x^3-x=0\)
\(\Leftrightarrow x\left(8x^2-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\8x^2-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{\frac{1}{8}}\end{cases}}\)
b) \(x\left(x-5\right)=2x-10\)
\(\Leftrightarrow x\left(x-5\right)=2\left(x-5\right)\)
\(\Leftrightarrow x\left(x-5\right)-2\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=5\end{cases}}\)
c) \(3x^2+30x=-75\)
\(\Leftrightarrow x^2+10x=-25\)
\(\Leftrightarrow x^2+10x+25=0\)
\(\Leftrightarrow\left(x+5\right)^2=0\)
\(\Leftrightarrow x+5=0\Leftrightarrow x=-5\)
bài 1: tìm x thuộc Z
a) 10-x-5=(-5)-7-11
b) (x-3)-(x+17-24)-(25-x)=24-(-30)
c) (7-9x)-(2x-4)=-(5.x+35)-(-27)-(+25)
a: =>5-x=-23
=>x=5+23=28
b: =>x-3-x+7-25+x=54
=>x-21=54
=>x=75
c: =>7-9x-2x+4=-5x-35+27-25=-5x-37
=>-11x+3=-5x-37
=>-6x=-40
=>x=20/3
a) \(10-x-5=\left(-5\right)-7-11\)
\(\Rightarrow5-x=-23\)
\(\Rightarrow x=5+23\)
\(\Rightarrow x=28\)
b) \(\left(x-3\right)-\left(x+17-24\right)-\left(25-x\right)=24-\left(-30\right)\)
\(\Rightarrow x-3-x-17+24-25+x=54\)
\(\Rightarrow x-21=54\)
\(\Rightarrow x=54+21\)
\(\Rightarrow x=75\)
c) \(\left(7-9x\right)-\left(2x-4\right)=-\left(5x+35\right)-\left(-27\right)-25\)
\(\Rightarrow7-9x-2x+4=-5x-35+27-25\)
\(\Rightarrow11-11x=-5x-33\)
\(\Rightarrow-11x+5x=-33-11\)
\(\Rightarrow-6x=-22\)
\(\Rightarrow x=\dfrac{22}{6}=\dfrac{11}{3}\)
a.
10-x-5 = (-5) - 7 -11
=>5-x = 0
=>x=5
b
(x-3) - (x+17-24) - (25-x) = 24 - (-30)
=>x - 3 - x - 17 + 24 - 25 - x = 24 + 30
=>-x - 21 = 54
=>-x = 75
=>x = -75
c
(7 - 9x) - (2x - 4) = - (5x + 35) - (-27) - 25
=>7-9x - 2x + 4 = -5x - 35 + 27 - 35
=>11 - 11x + 5x = -43
=>16x = 11 + 43
=>16x = 54
=>x=4
Quãng đường đi với vận tốc 30km/h là :
S1=v1.t1=30x (km)
Quãng đường đi với vận tốc 35 km/h là :
S2=v2.t2 = 35y (km)
Tổng quãng đường đi được là
S = S1 + S2 = 30x + 35y
Tìm x biết:
4x2-8x+4=2(1-x)(x+1)
4x2-25-(2x-5)(2x+7)=0
8x2+30x+7=0
x2+3x-18=0
8x2+30x+7=0
8x2+16x+14x+7=0
8x(x+2) +7(x+2)=0
(8x+7)(x+2)=0
=>\(\orbr{\begin{cases}8x+7=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{7}{8}\\x=-2\end{cases}}}\)
a)
4x2-8x+4=2(1-x)(x+1)
4x2-8x+4-2+2x2=0
6x2-8x+2=0
2(3x2-4x+1)=0
3x2-3x-x+1=0
3x(x-1) -(x-1)=0
(3x-1)(x-1)=0
\(\Rightarrow\orbr{\begin{cases}3x-1=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=1\end{cases}}}\)
d,
x2+3x-18=0
=> x2-3x+6x-18=8
=> x(x-3)+6(x-3)=0
=> (x-3)(x+6)=0
=> \(\orbr{\begin{cases}x=3\\x=-6\end{cases}}\)
Tìm x biết : \(x^4-30x^2+31x-30=0\)
\(x^4-30x^2+31x-30=0\)
\(\left(x^4+x\right)-30\left(x^2-x+1\right)=0\)
\(x\left(x^3+1\right)-30\left(x^2-x+1\right)=0\)
\(x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)=0\)
\(\left(x^2-x+1\right)\left[x\left(x+1\right)-30\right]=0\)
Ta có: \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
\(\Rightarrow x^2+x-30=0\left(x^2-x+1\ne0\right)\)
\(\left(x^2-5x\right)+\left(6x-30\right)=0\)
\(x\left(x-5\right)+6\left(x-5\right)=0\)
\(\left(x-5\right)\left(x+6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-6\end{cases}}}\)
Vậy \(\orbr{\begin{cases}x=5\\x=-6\end{cases}}\)