cho a>0, b>0 và \(a+b\ge4\)
tìm giá trị nhỏ nhất của
\(A=\frac{2}{a^2+b^2}+\frac{35}{ab}+2ab\)
Cho a>0 ; b>0 và \(a+b\le4\)
tìm giá trị nhỏ nhất của biểu thức:
\(A=\frac{2}{a^2+b^2}+\frac{35}{ab}+2ab\)
\(A=\frac{2}{a^2+b^2}+\frac{35}{ab}+2ab\)
\(=2\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{34}{ab}+\frac{17}{8}ab-\frac{1}{8}ab\)
\(\ge2.\frac{4}{a^2+b^2+2ab}+2\sqrt{\frac{34}{ab}.\frac{17}{8}ab}-\frac{1}{8}.\frac{\left(a+b\right)^2}{4}\)
\(\Leftrightarrow A\ge2.\frac{4}{\left(a+b\right)^2}+2.\frac{17}{2}-\frac{1}{8}.\frac{4}{4^2}+17-\frac{1}{2}\)
\(\Leftrightarrow A\ge\frac{1}{2}+17-\frac{1}{2}=17\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=2\)
Chúc bạn học tốt !!!
Cho a,b lớn hơn 0 thỏa a+b = 4. Tìm giá trị nhỏ nhất của A = \(\frac{2}{a^2+b^2}+\frac{35}{ab}2ab\)
cho a,b>0 và a+b<=1
tìm giá trị nhỏ nhất B=\(\frac{1}{1+a^2+b^2}+\frac{1}{2ab}\)
mọi người giải nhanh giùm cái
Hình như đề là a2+b2 thôi chứ có cả 1+a2+b2 luôn à? Mình làm theo cái đề có a2+b2 chứ không có +1 nhé!
Áp dụng bất đẳng thức Cauchy Schawrz dạng Engel ta được:
\(B=\frac{1^2}{a^2+b^2}+\frac{1^2}{2ab}\ge\frac{\left(1+1\right)^2}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}\)
mà a;b>0 => a+b>0 và \(a+b\le1\Rightarrow\left(a+b\right)^2\le1\) => \(\frac{4}{\left(a+b\right)^2}\ge\frac{4}{1}=4\)
=>\(B=\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge4\Rightarrow B_{min}=4\) <=> a=b=0,5
@Trà My: có 1+a2+b2 thì vẫn có Min vấn đề là chưa đủ trình độ mà còn đòi tự sửa đề
@Thắng Nguyễn: cậu ấy ghi thêm +1 vào thôi chứ vốn câu trước đó đăng là không có. Nếu như đây là đề chuẩn, có 1+a2+b2 thì làm Thắng làm đi, cho mọi người còn mở mang chứ
Cho a,b>0 và a+b≤ 4 . Tìm giá trị nhỏ nhất của A = \(\frac{2}{a^2+b^2}+\frac{32}{ab}+2ab\sqrt{2}\)
Cho hai số thực a,b khác 0 thõa mãn \(2a^2+\frac{b^2}{4}+\frac{1}{a^2}=4\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức S=ab+2019
\(2a^2+\frac{1}{a^2}+\frac{b^2}{4}=4\Leftrightarrow\left(a^2+\frac{1}{a^2}-2\right)+\left(a^2+\frac{b^2}{4}-ab\right)=4-ab-2\)
\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2+\left(a-\frac{b}{2}\right)^2=2-ab\)
\(VF=2-ab=\left(a-\frac{1}{a}\right)^2+\left(b-\frac{b}{2}\right)^2\ge0\)
Hay \(ab\le2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}a=\frac{1}{a}\\b=\frac{b}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(a;b\right)=\left(1;\frac{1}{2}\right)\\\left(a;b\right)=\left(-1;-\frac{1}{2}\right)\end{cases}}\)
ủa bạn tìm giá trị nhỏ nhất của biểu thức S=ab+2019 mà
Giúp mình với
1.Cho a,b >0 và a+b ≤ 1, tìm giá trị nhỏ nhất của S=ab + \(\frac{1}{ab}\)
2. Cho a, b, c >0 và a + b + c ≤ \(\frac{3}{2}\)
choa,b>0 thỏa a,b<=1
tìm giá trị nhỏ nhất A=\(\frac{1}{^{a^2+b^2}}+\frac{1}{2ab}\)
các bạn giải nhanh cái nha
Cho a,b>0 và \(a+\frac{1}{b}\le1\)
Tìm giá trị nhỏ nhất của biểu thức M :\(M=\frac{a^2+b^2}{ab}\)