Những câu hỏi liên quan
PD
Xem chi tiết
KS
6 tháng 10 2019 lúc 16:15

\(A=\frac{2}{a^2+b^2}+\frac{35}{ab}+2ab\)

\(=2\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{34}{ab}+\frac{17}{8}ab-\frac{1}{8}ab\)

\(\ge2.\frac{4}{a^2+b^2+2ab}+2\sqrt{\frac{34}{ab}.\frac{17}{8}ab}-\frac{1}{8}.\frac{\left(a+b\right)^2}{4}\)

\(\Leftrightarrow A\ge2.\frac{4}{\left(a+b\right)^2}+2.\frac{17}{2}-\frac{1}{8}.\frac{4}{4^2}+17-\frac{1}{2}\)

\(\Leftrightarrow A\ge\frac{1}{2}+17-\frac{1}{2}=17\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=2\)

Chúc bạn học tốt !!!

Bình luận (0)
PD
Xem chi tiết
TD
Xem chi tiết
TM
28 tháng 3 2017 lúc 23:34

Hình như đề là a2+b2 thôi chứ có cả 1+a2+b2 luôn à? Mình làm theo cái đề có a2+b2 chứ không có +1 nhé!

Áp dụng bất đẳng thức Cauchy Schawrz dạng Engel ta được:

\(B=\frac{1^2}{a^2+b^2}+\frac{1^2}{2ab}\ge\frac{\left(1+1\right)^2}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}\)

mà a;b>0 => a+b>0 và \(a+b\le1\Rightarrow\left(a+b\right)^2\le1\) => \(\frac{4}{\left(a+b\right)^2}\ge\frac{4}{1}=4\)

=>\(B=\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge4\Rightarrow B_{min}=4\)  <=> a=b=0,5

Bình luận (0)
TN
29 tháng 3 2017 lúc 19:05

@Trà My: có 1+a2+b2 thì vẫn có Min vấn đề là chưa đủ trình độ mà còn đòi tự sửa đề

Bình luận (0)
TM
30 tháng 3 2017 lúc 0:05

@Thắng Nguyễn: cậu ấy ghi thêm +1 vào thôi chứ vốn câu trước đó đăng là không có. Nếu như đây là đề chuẩn, có 1+a2+bthì làm Thắng làm đi, cho mọi người còn mở mang chứ

Bình luận (0)
AR
Xem chi tiết
HC
Xem chi tiết
H24
16 tháng 11 2018 lúc 17:33

\(2a^2+\frac{1}{a^2}+\frac{b^2}{4}=4\Leftrightarrow\left(a^2+\frac{1}{a^2}-2\right)+\left(a^2+\frac{b^2}{4}-ab\right)=4-ab-2\)

\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2+\left(a-\frac{b}{2}\right)^2=2-ab\)

\(VF=2-ab=\left(a-\frac{1}{a}\right)^2+\left(b-\frac{b}{2}\right)^2\ge0\)

Hay \(ab\le2\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}a=\frac{1}{a}\\b=\frac{b}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(a;b\right)=\left(1;\frac{1}{2}\right)\\\left(a;b\right)=\left(-1;-\frac{1}{2}\right)\end{cases}}\)

Bình luận (0)
HC
16 tháng 11 2018 lúc 17:39

ủa bạn tìm giá trị nhỏ nhất của biểu thức S=ab+2019 mà 

Bình luận (0)
TH
Xem chi tiết
TD
Xem chi tiết
TM
28 tháng 3 2017 lúc 23:36

Câu hỏi của tran huu dinh - Toán lớp 8 - Học toán với OnlineMath

Bình luận (0)
TM
28 tháng 3 2017 lúc 23:36

một bài y chang đã làm rồi :)

Bình luận (0)
BY
Xem chi tiết
TT
Xem chi tiết