cho a,b >0 và \(a+b\le4\). tìm min của
\(A=\frac{2}{a^2+b^2}+\frac{32}{ab}+2ab\sqrt{2}\)
Cho a, b là các số dương thỏa mãn a + b + 2ab = 12. Tìm giá trị nhỏ nhất của biểu thức\(A=\frac{a^2+ab}{a+2b}+\frac{b^2+ab}{2a+b}\)
mn helpp mk cai
cho cac so duong a,b,c khac 0 TM: a+b+c=abc.tìm giá trị nhỏ nhất của bt \(\frac{a}{\sqrt{bc\left(1+A^2\right)}}+\frac{b}{\sqrt{ca\left(1+b^2\right)}}+\frac{c}{\sqrt[]{ab\left(1+c^2\right)}}\)
cho a,b>0 thỏa mãn \(\left(\sqrt{a}+2\right)\left(\sqrt{b}+2\right)=9\)
Tìm giá trị nhỏ nhất của biểu thức T=\(\dfrac{a^4}{b}+\dfrac{b^4}{a}\)
cho a,b>0 thỏa \(\frac{1}{a}+\frac{1}{b}=2\)
tìm giá trị lớn nhất của Q=\(\frac{1}{a^4+b^2+2ab^2}+\frac{1}{a^2+b^4+2a^2b}\)
Cho a,b khác 0 và thỏa mãn \(a\sqrt{2-b^2}+b\sqrt{2-a^2}=2\)
Tìm Giá trị nhỏ nhất của:
P=\(\dfrac{1}{a}+\dfrac{1}{b}-a-b\)
Cho a,b khác 0 và thỏa mãn \(a\sqrt{2-b^2}+b\sqrt{2-a^2=2}\)
Tìm Giá trị nhỏ nhất của:
P=\(\dfrac{1}{a}+\dfrac{1}{b}-a-b\)
Ôn tập Bất đẳng thức
1 , Cho a,b,c<3 thỏa mãn abc(a+b+c)=3 . Tìm GTNN của C= \(\frac{a}{\sqrt{9-b^2}}+\frac{b}{\sqrt{9-c^2}}+\frac{c}{\sqrt{9-a^2}}\)
2, Cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=3\)
Chứng minh a, \(\frac{1}{4-\sqrt{ab}}+\frac{1}{4-\sqrt{bc}}+\frac{1}{4-\sqrt{ca}}\le1\)
b, \(\frac{2a^2}{a+b^2}+\frac{2b^2}{b+c^2}+\frac{2c^2}{c+a^2}\ge a+b+c\)
3, Cho a,b,c >0 và \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=1\)
Tính GTLN của P= \(\frac{1}{\sqrt{5a^2+2ab+2b^2}}+\frac{1}{\sqrt{5b^2+2bc+2c^2}}+\frac{1}{\sqrt{5c^2+2ca+2a^2}}\)
4 , Cho a,b,c>0 và \(ab+bc+ca\ge a+b+c\)
Chứng minh \(\frac{a^2}{\sqrt{a^3+8}}+\frac{b^2}{\sqrt{b^3+8}}+\frac{c^2}{\sqrt{c^3+8}}\ge1\)
1 . Cho các số thực a, b, c dương thỏa mãn
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3\)
Tính giá trị lớn nhất của biể thức: \(P=\frac{1}{\sqrt{a^2-ab+3b^2+1}}+\frac{1}{\sqrt{b^2-bc+3c^2+1}}+\frac{1}{\sqrt{c^2-ac+3a^2+1}}\)
2 .
Cho các số thực dương a, b, c thỏa mãn: \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\le1\)
Tìm giá trị nhỏ nhất của biểu thức: \(P=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+a^2}\)