\(B=3\sqrt{2}-\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
bài 5 Tính:
a) \(\sqrt{6-2\sqrt{5}}\)
b)\(\sqrt{7-4\sqrt{3}}\)
c)\(\sqrt{3-2\sqrt{2}}\) -\(\sqrt{6-4\sqrt{2}}\)
d)\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
Lời giải:
a. \(\sqrt{6-2\sqrt{5}}=\sqrt{5-2\sqrt{5}.\sqrt{1}+1}=\sqrt{(\sqrt{5}-1)^2}=\sqrt{5}-1\)
b. \(\sqrt{7-4\sqrt{3}}=\sqrt{4-2\sqrt{4}.\sqrt{3}+3}=\sqrt{(\sqrt{4}-\sqrt{3})^2}=\sqrt{4}-\sqrt{3}=2-\sqrt{3}\)
c.
\(\sqrt{3-2\sqrt{2}}-\sqrt{6-4\sqrt{2}}=\sqrt{2-2\sqrt{2}+1}-\sqrt{4-4\sqrt{2}+2}\)
\(=\sqrt{(\sqrt{2}-1)^2}-\sqrt{(\sqrt{4}-\sqrt{2})^2}\)
\(=|\sqrt{2}-1|-|\sqrt{4}-\sqrt{2}|=\sqrt{2}-1-(2-\sqrt{2})=2\sqrt{2}-3\)
d.
\(=\sqrt{13+30\sqrt{2+\sqrt{(\sqrt{8}+1)^2}}}=\sqrt{13+30\sqrt{2+\sqrt{8}+1}}\)
\(=\sqrt{13+30\sqrt{3+2\sqrt{2}}}=\sqrt{13+30\sqrt{(\sqrt{2}+1)^2}}\)
\(=\sqrt{13+30(\sqrt{2}+1)}=\sqrt{43+30\sqrt{2}}=\sqrt{18+2\sqrt{18.25}+25}\)
\(=\sqrt{(\sqrt{18}+\sqrt{25})^2}=\sqrt{18}+\sqrt{25}=5+3\sqrt{2}\)
a) \(\sqrt{6-2\sqrt{5}}=\sqrt{5}-1\)
b) \(\sqrt{7-4\sqrt{3}}=2-\sqrt{3}\)
c) \(\sqrt{3-2\sqrt{2}}-\sqrt{6-4\sqrt{2}}=\sqrt{2}-1-2+\sqrt{2}=-3+2\sqrt{2}\)
d) Ta có: \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
\(=\sqrt{13+30\sqrt{2+1+2\sqrt{2}}}\)
\(=\sqrt{13+30\left(\sqrt{2}+1\right)}\)
\(=\sqrt{43+30\sqrt{2}}\)
\(=5+3\sqrt{2}\)
Giúp mình với
II.nhân:\(\sqrt{A}\).\(\sqrt{B}\)=\(\sqrt{..............}\)(A≥0;B≥0)
a)\(\sqrt{2}\left(\sqrt{3-\sqrt{5}}-\sqrt{3+\sqrt{5}}\right)\)
b)\(\sqrt{13+30\sqrt{2}+\sqrt{9+4\sqrt{2}}}\)
c)\(\sqrt{6+2\sqrt{5}-\sqrt{13+\sqrt{48}}}\)
a) Ta có: \(\sqrt{2}\left(\sqrt{3-\sqrt{5}}-\sqrt{3+\sqrt{5}}\right)\)
\(=\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}\)
\(=\sqrt{5}-1-\sqrt{5}-1=-2\)
b) Ta có: \(\sqrt{13+30\sqrt{2}+\sqrt{9+4\sqrt{2}}}\)
\(=\sqrt{13+30\sqrt{2}+2\sqrt{2}+1}\)
\(=\sqrt{14+32\sqrt{2}}\)
c) Ta có: \(\sqrt{6+2\sqrt{5}-\sqrt{13+\sqrt{48}}}\)
\(=\sqrt{6+2\sqrt{5}-2\sqrt{3}-1}\)
\(=\sqrt{5+2\sqrt{5}-2\sqrt{3}}\)
Thực hiện phép tính
a, \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
b, \(\sqrt{5-\sqrt{13+4\sqrt{3}}}+\sqrt{3+\sqrt{13+4\sqrt{3}}}\)
c, \(\sqrt{1+\sqrt{3+\sqrt{13+4\sqrt{3}}}}+\sqrt{1-\sqrt{3-\sqrt{13-4\sqrt{3}}}}\)
d, \(\left(\sqrt{3}-\sqrt{2}\right)\sqrt{5+2\sqrt{6}}\)
a,\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
\(=\sqrt{13+30\sqrt{3+2\sqrt{2}}}\\ =\sqrt{13+30\left(\sqrt{2}+1\right)}\)
\(=\sqrt{43+30\sqrt{2}}=5+3\sqrt{2}\)
b, \(\sqrt{5-\sqrt{13+4\sqrt{3}}}+\sqrt{3+\sqrt{13+4\sqrt{3}}}\)
\(\Leftrightarrow\sqrt{5-\sqrt{\left(2\sqrt{3}\right)^2+2.2\sqrt{3}+1}}+\sqrt{3+\sqrt{\left(2\sqrt{3}\right)^2+2.2\sqrt{3}+1}}\)
\(\Leftrightarrow\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}+\sqrt{3+\sqrt{\left(2\sqrt{3}+1\right)^2}}\)
\(\Leftrightarrow\sqrt{5-2\sqrt{3}-1}+\sqrt{3+2\sqrt{3}+1}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(\Leftrightarrow\sqrt{3}-1+\sqrt{3}+1\)
\(\Leftrightarrow2\sqrt{3}\)
d,\(\left(\sqrt{3}-\sqrt{2}\right)\sqrt{5+2\sqrt{6}}\)
\(\Leftrightarrow\left(\sqrt{3}-\sqrt{2}\right)\sqrt{3+2.\sqrt{2}\sqrt{3}+2}\)
\(\Leftrightarrow\left(\sqrt{3}-\sqrt{2}\right)\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)
\(\Leftrightarrow\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)\)
\(\Leftrightarrow3-2\Leftrightarrow1\)
Thực hiện phép tính:
a)\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
b)\(\left(\sqrt{3}-\sqrt{2}\right)\sqrt{5+2\sqrt{6}}\)
c)\(\sqrt{5-\sqrt{13+4\sqrt{3}}}+\sqrt{3+\sqrt{13+4\sqrt{3}}}\)
d)\(\sqrt{1+\sqrt{3+\sqrt{13+4\sqrt{3}}}}+\sqrt{1-\sqrt{3-\sqrt{13-4\sqrt{3}}}}\)
Mọi người giải gấp giúp em với!!!!
a/ \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
\(=\sqrt{13+30\sqrt{2+\sqrt{1+2\cdot1\cdot2\sqrt{2}+8}}}\)
\(=\sqrt{13+30\sqrt{2+\sqrt{\left(1+2\sqrt{2}\right)^2}}}\)
\(=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}=\sqrt{13+30\sqrt{\left(\sqrt{2}+1\right)^2}}\)
\(=\sqrt{13+30\left(\sqrt{2}+1\right)}=\sqrt{43+30\sqrt{2}}\)
\(=\sqrt{25+2\cdot5\cdot3\sqrt{2}+18}=\sqrt{\left(5+3\sqrt{2}\right)^2}=5+3\sqrt{2}\)
b/ \(\left(\sqrt{3}-\sqrt{2}\right)\cdot\sqrt{5+2\sqrt{6}}=\sqrt{3\left(5+2\sqrt{6}\right)}-\sqrt{2\left(5+2\sqrt{6}\right)}\)
\(=\sqrt{15+6\sqrt{6}}-\sqrt{10+4\sqrt{6}}\)
\(=\sqrt{\left(3+\sqrt{6}\right)^2}-\sqrt{\left(2+\sqrt{6}\right)^2}\)
\(=3+\sqrt{6}-2-\sqrt{6}=1\)
c/ \(\sqrt{5-\sqrt{13+4\sqrt{3}}}+\sqrt{3+\sqrt{13+4\sqrt{3}}}\)
\(=\sqrt{5-\sqrt{\left(1+2\sqrt{3}\right)^2}}+\sqrt{3+\sqrt{\left(1+2\sqrt{3}\right)^2}}\)
\(=\sqrt{5-1-2\sqrt{3}}+\sqrt{3+1+2\sqrt{3}}\)
\(=\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}\)
\(=\sqrt{3}-1+1+\sqrt{3}=2\sqrt{3}\)
d/ \(\sqrt{1+\sqrt{3+\sqrt{13+4\sqrt{3}}}}+\sqrt{1-\sqrt{3-\sqrt{13-4\sqrt{3}}}}\)
\(=\sqrt{1+\sqrt{3+\sqrt{\left(1+2\sqrt{3}\right)^2}}}+\sqrt{1-\sqrt{3-\sqrt{\left(2\sqrt{3}-1\right)^2}}}\)
\(=\sqrt{1+\sqrt{4+2\sqrt{3}}}+\sqrt{1-\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{1+\sqrt{\left(\sqrt{3}+1\right)^2}}+\sqrt{1-\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\sqrt{1+\sqrt{3}+1}+\sqrt{1-\sqrt{3}+1}\)
\(=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)
Rút gọn \(A=\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
\(B=\sqrt{4+\sqrt{5\sqrt{3+5\sqrt{48-10\sqrt{7}+4\sqrt{3}}}}}\)
Giải:
\(A=\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
\(\Leftrightarrow A=\sqrt{13+30\sqrt{2+\sqrt{\left(2\sqrt{2}\right)^2+4\sqrt{2}+1^2}}}\)
\(\Leftrightarrow A=\sqrt{13+30\sqrt{2+\sqrt{\left(2\sqrt{2}+1\right)^2}}}\)
\(\Leftrightarrow A=\sqrt{13+30\sqrt{2+2\sqrt{2}+1^2}}\)
\(\Leftrightarrow A=\sqrt{13+30\sqrt{\left(\sqrt{2}\right)^2+2\sqrt{2}+1^2}}\)
\(\Leftrightarrow A=\sqrt{13+30\sqrt{\left(\sqrt{2}+1\right)^2}}\)
\(\Leftrightarrow A=\sqrt{13+30\left(\sqrt{2}+1\right)}\)
\(\Leftrightarrow A=\sqrt{5^2+2.5.3\sqrt{2}+\left(3\sqrt{2}\right)^2}\)
\(\Leftrightarrow A=\sqrt{\left(5+3\sqrt{2}\right)^2}\)
\(\Leftrightarrow A=5+3\sqrt{2}^2\)
Vậy ...
Câu b bị sai đề hay sao đó bạn, bạn kiểm tra lại rồi ghi lại đề nhé!
thực hiện phép tính
a, \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
b,\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{3}}}}\)
c,\(\left(\sqrt{3}-\sqrt{2}\right)\sqrt{5+2\sqrt{6}}\)
d,\(\sqrt{5-\sqrt{13+4\sqrt{3}}+}\sqrt{3+\sqrt{13+4\sqrt{3}}}\)
a) \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt{5-\sqrt{3-\sqrt{20-2\cdot3\cdot\sqrt{20}+9}}}\)
\(=\sqrt{5-\sqrt{3-\sqrt{\left(\sqrt{20}-3\right)^2}}}\)
\(=\sqrt{5-\sqrt{3-\sqrt{20}+3}}\)
\(=\sqrt{5-\sqrt{6-\sqrt{20}}}\)
\(=\sqrt{5-\sqrt{5-2\sqrt{5}+1}}\)
\(=\sqrt{5-\sqrt{\left(\sqrt{5}+1\right)^2}}\)
\(=\sqrt{5-\sqrt{5}-1}\)
\(=\sqrt{4-\sqrt{5}}\)
c)\(\left(\sqrt{3}-\sqrt{2}\right)\sqrt{5+2\sqrt{6}}\)
\(=\left(\sqrt{3}-\sqrt{2}\right)\sqrt{3+2\cdot\sqrt{3}\cdot\sqrt{2}+2}\)
\(=\left(\sqrt{3}-\sqrt{2}\right)\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)
\(=\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)\)
\(=3-2=1\)
d)\(\sqrt{5-\sqrt{13+4\sqrt{3}}}+\sqrt{3+\sqrt{13+4\sqrt{3}}}\)
\(=\sqrt{5-\sqrt{12+2\cdot\sqrt{12}+1}}+\sqrt{3+\sqrt{12+2\cdot\sqrt{12}+1}}\)
\(=\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}+\sqrt{3+\sqrt{\left(\sqrt{12}+1\right)^2}}\)
\(=\sqrt{5-\sqrt{12}-1}+\sqrt{3+\sqrt{12}+1}\)
\(=\sqrt{4-\sqrt{12}}+\sqrt{4+\sqrt{12}}\)
\(=\sqrt{3-2\sqrt{3}+1}+\sqrt{4+2\sqrt{3}+1}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\sqrt{3}-1+\sqrt{3+1}\)
\(=2\sqrt{3}\)
Tính:
a, A = \(\sqrt{3+2\sqrt{2}}-\sqrt{6-4\sqrt{2}}\)
b, B = \(\sqrt{6-2\sqrt{5}+\sqrt{6+2\sqrt{5}}}\)
c, C = \(\sqrt{1+2\sqrt{1+2\sqrt{3+2\sqrt{2}}}}\)
d, D = \(\sqrt{6+2\sqrt{5-\sqrt{13+4\sqrt{3}}}}\)
e, E = \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
Tính:
a.\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
b.\(\sqrt{13+\sqrt{30\sqrt{2+\sqrt{9+4\sqrt{2}}}}}\)
c.\(\frac{\sqrt{9-6\sqrt{2}}-\sqrt{6}}{\sqrt{3}}\)
a/ \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(3-2\sqrt{5}\right)^2}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}=1\)
b,c tương tự
\(\sqrt{13+30\sqrt{ }2+\sqrt{ }9+4\sqrt{ }2}=5+3\sqrt{2}\)