\(\frac{x+4}{2015}+\frac{x+3}{2016}=\frac{x+2}{2017}+\frac{x+1}{2018}\text{ }\text{ }\)
a)\(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\)
b)\(\frac{x+2015}{5}+\frac{x+2016}{6}=\frac{x+2017}{7}+\frac{x+2018}{8}\)
a) \(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\)
\(\Leftrightarrow\frac{x+2015}{5}+\frac{5}{5}+\frac{x+2016}{4}+\frac{4}{4}=\frac{x+2017}{3}+\frac{3}{3}+\frac{x+2018}{2}+\frac{2}{2}\)
\(\Leftrightarrow\frac{x+2020}{5}+\frac{x+2020}{4}=\frac{x+2020}{3}+\frac{x+2002}{2}\)
\(\frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\)
\(\Leftrightarrow\left(x+2020\right).\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\)
\(\Leftrightarrow x+2020=0\)
\(\Leftrightarrow x=-2020\)
Vậy : \(x=-2020\)
Chúc bạn học tốt !!
a) \(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\\ \left(\frac{x+2015}{5}+1\right)+\left(\frac{x+2016}{4}+1\right)=\left(\frac{x+2017}{3}+1\right)+\left(\frac{x+2018}{2}+1\right)\\ \frac{x+2020}{5}+\frac{x+2020}{4}=\frac{x+2020}{3}+\frac{x+2020}{2}\\ \frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\\ \left(x+2020\right)\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\\ \Rightarrow x+2020=0\\ \Rightarrow x=-2020\)
Vậy x = -2020
b) \(\frac{x+2015}{5}+\frac{x+2016}{6}=\frac{x+2017}{7}+\frac{x+2018}{8}\\ \left(\frac{x+2015}{5}-1\right)+\left(\frac{x+2016}{6}-1\right)=\left(\frac{x+2017}{7}-1\right)+\left(\frac{x+2018}{8}-1\right)\\ \frac{x+2010}{5}+\frac{x+2010}{6}=\frac{x+2010}{7}+\frac{x+2010}{8}\\ \frac{x+2010}{5}+\frac{x+2010}{6}-\frac{x+2010}{7}-\frac{x+2010}{8}=0\\ \left(x+2010\right)\left(\frac{1}{5}+\frac{1}{6}-\frac{1}{7}-\frac{1}{8}\right)=0\\ \Rightarrow x+2010=0\\ \Rightarrow x=-2010\)
Vậy x = -2010
\(\frac{x-1}{2018}+\frac{x-2}{2017}=\frac{x-3}{2016}+\frac{x-4}{2015}\)
\(\frac{x-1}{2018}+\frac{x-2}{2017}=\frac{x-3}{2016}+\frac{x-4}{2015}\)
\(\Rightarrow\frac{x-1}{2018}-1+\frac{x-2}{2017}-1=\frac{x-3}{2016}-1+\frac{x-4}{2015}-1\)
\(\Rightarrow\frac{x-1-2018}{2018}+\frac{x-2-2017}{2017}=\frac{x-3-2016}{2016}+\frac{x-4-2015}{2015}\)
\(\Rightarrow\frac{x-2019}{2018}+\frac{x-2019}{2017}=\frac{x-2019}{2016}+\frac{x-2019}{2015}\)
\(\Rightarrow\frac{x-2019}{2018}+\frac{x-2019}{2017}-\frac{x-2019}{2016}-\frac{x-2019}{2015}=0\)
\(\Rightarrow\left(x-2019\right)\left(\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\right)=0\)
Mà \(\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\ne0\)
\(\Rightarrow x-2019=0\)
\(\Rightarrow x=2019\)
Tim x
\(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\)
2/ tim x
\(\frac{x+2015}{5}+\frac{x+2016}{6}=\frac{x+2017}{7} +\frac{x+2018}{8}\)
3/ tim x
\(\frac{1}{3}+\frac{1}{6}+\frac{99}{101}+\frac{1}{15}+... +\frac{1}{x\left(2x+1\right)}=\frac{1}{10}\)
\(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\)
\(\Leftrightarrow\left(\frac{x+2015}{5}+1\right)+\left(\frac{x+2016}{4}+1\right)=\left(\frac{x+2017}{3}+1\right)+\left(\frac{x+2018}{2}+1\right)\)
\(\Leftrightarrow\frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\)
\(\Leftrightarrow x+2020=0\)vì \(\frac{1}{5}+\frac{1}{4}+\frac{1}{3}+\frac{1}{2}\ne0\)
\(\Leftrightarrow x=-2020\)
khó lắm
bây h thì bạn giải đc chưa
Cảm ơn bạn rất nhiều mình đã hiểu rồi
Chúc bạn học tốt nhé
tìm x :
\(\frac{x-1}{2018}+\frac{x-2}{2017}=\frac{x-3}{2016}+\frac{x-4}{2015}\)
\(\Rightarrow\frac{x-1}{2018}-1+\frac{x-2}{2017}-1=\frac{x-3}{2016}-1+\frac{x-4}{2015}-1\)
\(\Rightarrow\frac{x-2019}{2018}+\frac{x-2019}{2017}=\frac{x-2019}{2016}+\frac{x-2019}{2015}\)
\(\Rightarrow\orbr{\begin{cases}x=2019\left(1\right)\\\frac{1}{2018}+\frac{1}{2017}=\frac{1}{2016}+\frac{1}{2015}\left(2\right)\end{cases}}\) mà \(\left(2\right)\)không thể xảy ra nên x=2019 là nghiệm của phương trình.
\(\frac{x-1}{2018}+\frac{x-2}{2017}-\frac{x-3}{2016}=\frac{x-4}{2015}\)
Tìm x
Em chuyển sang cùng một vế rồi ghép cái đầu vói cái thứ 3 cái thứ 2 với cái cuối. :)Dùng quy đồng :)
Tìm x biết:
\(\frac{x}{2018}+\frac{x+1}{2017}+\frac{x+2}{2016}+\frac{x+3}{2015}=-4\)
Tìm x biết:
\(\frac{x}{2018}+\frac{x+1}{2017}+\frac{x+2}{2016}+\frac{x+3}{2015}=-4\)
Giải:Ta có:\(\frac{x}{2018}+\frac{x+1}{2017}+\frac{x+2}{2016}+\frac{x+3}{2015}=-4\)
\(\Rightarrow\frac{x}{2018}+1+\frac{x+1}{2017}+1+\frac{x+2}{2016}+1+\frac{x+3}{2015}+1=0\)
\(\Rightarrow\frac{x+2018}{2018}+\frac{x+2018}{2017}+\frac{x+2018}{2016}+\frac{x+2018}{2015}=0\)
\(\Rightarrow\left(x+2018\right)\left(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}\right)=0\)
\(\Rightarrow x+2018=0\) vì \(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}>0\)
\(\Rightarrow x=-2018\)
Vậy x=-2018 thỏa mãn
x2018 +x+12017 +x+22016 +x+32015 =−4
⇒x2018 +1+x+12017 +1+x+22016 +1+x+32015 +1=0
⇒x+20182018 +x+20182017 +x+20182016 +x+20182015 =0
⇒(x+2018)(12018 +12017 +12016 +12015 )=0
⇒x+2018=0 vì 12018 +12017 +12016 +12015 >0
⇒x=−2018
Vậy x=-2018 thỏa mãn
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
\(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\)
\(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\)
\(\Leftrightarrow\frac{12\left(x+2015\right)}{60}+\frac{15\left(x+2016\right)}{60}=\frac{20\left(x+2017\right)}{60}+\frac{30\left(x+2018\right)}{60}\)
\(\Rightarrow12x+24180+15x+30240=20x+40340+30x+60540\)
\(\Leftrightarrow-23x=22460\Leftrightarrow x=-\frac{22460}{23}\)
\(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\)
\(\frac{x+2015}{7}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\)
\(\Rightarrow\frac{x+2015}{7}+\frac{7}{7}+\frac{x+2016}{4}+\frac{4}{4}=\frac{x+2017}{3}+\frac{3}{3}+\frac{x+2018}{2}+\frac{2}{2}\)
\(\Rightarrow\frac{x+2020}{7}+\frac{x+2020}{4}=\frac{x+2020}{3}+\frac{x+2020}{2}\)
\(\Rightarrow\frac{x+2020}{7}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\)
\(\Rightarrow\left(x+2020\right)\left(\frac{1}{7}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\)
Mà \(\frac{1}{7}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\ne0\)
\(\Rightarrow x+2020=0\)
\(\Rightarrow x=-2020\)
Tìm x thỏa mãn:
\(\frac{x+1}{2018}+\frac{x+2}{2017}+\frac{x+3}{2016}=\frac{x+4}{2015}+\frac{x+5}{2014}+\frac{x+6}{2013}\)
\(\frac{x+1}{2018}+\frac{x+2}{2017}+\frac{x+3}{2016}=\frac{x+4}{2015}+\frac{x+5}{2014}+\frac{x+6}{2013}\)
\(\Leftrightarrow\) \(\frac{x+1}{2018}+1+\frac{x+2}{2017}+1+\frac{x+3}{2016}+1=\frac{x+4}{2015}+1+\frac{x+5}{2014}+1+\frac{x+6}{2013}+1\)
\(\Leftrightarrow\frac{x+2019}{2018}+\frac{x+2019}{2017}+\frac{x+2019}{2016}=\frac{x+2019}{2015}+\frac{x+2019}{2014}+\frac{x+2019}{2013}\)
\(\Leftrightarrow\frac{x+2019}{2018}+\frac{x+2019}{2017}+\frac{x+2019}{2016}-\frac{x+2019}{2015}-\frac{x+2019}{2014}-\frac{x+2019}{2013}=0\)
\(\Leftrightarrow\left(x+2019\right)\left(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}-\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\right)\)\(=0\)
Lại có: \(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}-\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\) \(\ne\) \(0\)
\(\Rightarrow x+2019=0\)
\(\Rightarrow x=0-2019=-2019\)
Vậy x= -2019