Những câu hỏi liên quan
TO
Xem chi tiết
PT
17 tháng 1 2016 lúc 10:11

bạn tick cho mk đi rùi mk giải

Bình luận (0)
PT
17 tháng 1 2016 lúc 10:18

bạn vào đây xem thử nè

mk cũng đã từng giải bài này ùi. mk đưa lên mạng xem rồi đọ đây là hiểu 

http://giasutoan.giasuthukhoa.edu.vn/ly-thuyet-ve-dong-du-trong-chuong-trinh-toan-lop-6/

Bình luận (0)
PT
17 tháng 1 2016 lúc 13:12

mk làm nt ko biết đúng hay sai nhưng còn thiếu mấy bước cuối nha

 5^2n+1 + 2^n+4 + 2^n+1 chia hết cho 23

=> 10^n.5 + 2^n.16 + 2^n.2

=> 10^n.5 + 2^n.18 

bạn thử để ý 18+5 = 23 vậy ta làm sao để đưa được thành 23 nhân với một vế nào đó 

=> 2^n.5^n.5+2^n.18

=> 2^n( 5^n.5+18)

tịt lun. mk thử hỏi chị mk thì chị mk bảo làm nt là đúng nhưng thử suy nghĩ mấy bước cuối.chị mk ko chịu bày cho nên bạn thông cảm dùm mk để đền bù mk sẽ trả lời các câu hỏi khác của bạn cho dù nt nào. xin lỗi vì đã thất hứa 

 

Bình luận (0)
PK
Xem chi tiết
ML
17 tháng 3 2017 lúc 17:38

Hằng đẳng thức: a^n - b^n = (a-b)[a^(n-1).b + a(n-2).b² +..+ b^(n-1)] = (a-b).p 

* 5^2n - 2^n = 25^n - 2^n = (25-2)p = 23p => 5.5^2n - 5.2^n = 5.23.p 
=> 5^(2n+1) - 5.2^n = 5.23p chia hết cho 23 

* 2^(n+4) + 2^(n+1) = 2^n.2^4 + 2^n.2 = 2^n(2^4 + 2) = 18.2^n = 23.2^n - 5.2^n 

Vậy: 5^(2n+1) + 2^(n+4) + 2^(n+1) = 5^(2n+1) - 5.2^n + 23.2^n chia hết cho 23 .

Bình luận (0)
D3
Xem chi tiết
NM
22 tháng 6 2016 lúc 20:01

1)  \(55^{n+1}-55^n=55^n\left(55-1\right)=55^n.54⋮54\)

Bình luận (4)
NM
22 tháng 6 2016 lúc 20:04

2) A= \(n^2\left(n+1\right)+2n\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)

A là tích 3 số TN liên tiep => A\(⋮\)2; A\(⋮\)3

=> A\(⋮\)2.3

A\(⋮\)6

Bình luận (0)
HA
22 tháng 6 2016 lúc 20:34

Toán lớp 8

Bình luận (1)
DT
Xem chi tiết
NQ
22 tháng 7 2021 lúc 10:53

ta có

\(2n^2\left(n+1\right)-2n^2\left(n^2+n-3\right)=2n^2\left(4-n^2\right)=2n^2\left(2-n\right)\left(2+n\right)\)

nhận thấy \(n-2,n,n+2\)là ba số chẵn liên tiếp hoặc 3 số lẻ liên tiếp

do đó tích \(n^2\left(2-n\right)\left(2+n\right)\text{ chia hết cho 3 với mọi n}\)

hay \(2n^2\left(2-n\right)\left(2+n\right)\text{ chia hết cho 6 với mọi n}\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
TC
7 tháng 8 2021 lúc 20:33

undefined

Bình luận (0)
NT
7 tháng 8 2021 lúc 23:05

Bài 1: 

b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)

\(=4n^2-9-4n^2+36n\)

\(=36n-9⋮9\)

Bình luận (0)
VM
Xem chi tiết
NA
15 tháng 12 2018 lúc 22:33

1. Xét n=1
VT = 12 = 1
VP = \(\dfrac{n.\left(4n^2-1\right)}{3}=\dfrac{1.\left(4.1-1\right)}{3}=1\)
=> VT = VP
=> Mệnh đề đúng.
+) Giả sử với n = k , mệnh đề đúng hay: \(1^2+3^2+5^2+...+\left(2k-1\right)^2=\dfrac{k.\left(4k^2-1\right)}{3}\)+) Ta phải chứng minh với n = k + 1, mệnh đề cũng đúng, tức là: \(1^2+3^2+5^2+...+\left(2k-1\right)^2+\left(2k+1\right)^2=\dfrac{\left(k+1\right).\left(4.\left(k+1\right)^2-1\right)}{3}\\ =\dfrac{\left(k+1\right)\left(4k^2+8k+3\right)}{3}\left(1\right)\)
+) Thật vậy, với n = k + 1, theo giả thiết quy nạp, ta có:
\(1^2+3^2+5^2+...+\left(2k-1\right)^2+\left(2k+1\right)^2=\dfrac{k.\left(4.k^2-1\right)}{3}+\left(2k+1\right)^2\\ =\dfrac{k.\left(4k^2-1\right)+3.\left(2k+1\right)^2}{3}=\dfrac{4k^3-k+12k^2+12k+3}{3}\\ =\dfrac{\left(k+1\right)\left(2k+3\right)\left(2k+1\right)}{3}\\ =\dfrac{\left(k+1\right)\left(4k^2+8k+3\right)}{3}\left(2\right)\)+) Từ (1) và (2) => Điều phải chứng minh

Bình luận (0)
NA
15 tháng 12 2018 lúc 23:27

2. +) Xét n = 1
\(< =>4^1+15.1-1=18⋮9\)
=> với n=1 , mệnh đề đúng.
+) Giả sử với n=k , mệnh đề đúng, tức là: \(4^k+15k-1⋮9\)
+) Ta phải chứng minh với n = k + 1 mệnh đề cũng đúng, tức là: \(4^{k+1}+15\left(k+1\right)-1⋮9\)
Thật vậy: với n = k + 1, theo giả thiết quy nạp, ta có:
\(4^{k+1}+15\left(k+1\right)-1=4.4^k+15k+15-1\\ =4.4^k+4.15k-4-3.15k+18=4.\left(4^k+15k-1\right)-\left(45k-18\right)⋮9\)=> Điều phải chứng minh.

Bình luận (0)
H24
Xem chi tiết
NT
2 tháng 10 2021 lúc 23:14

Bài 1:

Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)

\(=2n^3+2n^2-2n^3-2n^2+6n\)

\(=6n⋮6\)

Bình luận (0)
LL
2 tháng 10 2021 lúc 23:17

1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)

2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)

Bình luận (0)
PK
Xem chi tiết
LF
17 tháng 3 2017 lúc 18:02

\(5^{2n+1}+2^{n+4}+2^{n+1}\)

\(=25^n\cdot5+2^n\cdot16+2^n\cdot2\)

\(\equiv2^n\cdot5+2^n\cdot16+2^n\cdot2\)

\(=2^n\left(5+16+2\right)=2^n\cdot23\equiv0\)\((mod 23)\)

Bình luận (0)
PH
17 tháng 3 2017 lúc 18:47

hằng đẳng thức: a^n - b^n = (a-b)[a^(n-1).b + a(n-2).b² +..+ b^(n-1)] = (a-b).p

* 5^2n - 2^n = 25^n - 2^n = (25-2)p = 23p => 5.5^2n - 5.2^n = 5.23.p
=> 5^(2n+1) - 5.2^n = 5.23p chia hết cho 23

* 2^(n+4) + 2^(n+1) = 2^n.2^4 + 2^n.2 = 2^n(2^4 + 2) = 18.2^n = 23.2^n - 5.2^n

Vậy: 5^(2n+1) + 2^(n+4) + 2^(n+1) = 5^(2n+1) - 5.2^n + 23.2^n chia hết cho 23

Bình luận (0)
TT
17 tháng 3 2017 lúc 21:00

hằng đẳng thức: a^n - b^n = (a-b)[a^(n-1).b + a(n-2).b² +..+ b^(n-1)] = (a-b).p

* 5^2n - 2^n = 25^n - 2^n = (25-2)p = 23p => 5.5^2n - 5.2^n = 5.23.p
=> 5^(2n+1) - 5.2^n = 5.23p chia hết cho 23

* 2^(n+4) + 2^(n+1) = 2^n.2^4 + 2^n.2 = 2^n(2^4 + 2) = 18.2^n = 23.2^n - 5.2^n

Vậy: 5^(2n+1) + 2^(n+4) + 2^(n+1) = 5^(2n+1) - 5.2^n + 23.2^n chia hết cho 23

Bình luận (0)
HG
Xem chi tiết