Những câu hỏi liên quan
ND
Xem chi tiết
LK
15 tháng 12 2017 lúc 22:22

Xét \(B=\frac{x^2+y^2+3}{x^2+y^2+2}\)

Mà \(x^2+y^2\ge0\)

Ta có \(\left(x^2+y^2+3\right)-\left(x^2+y^2+2\right)=1\)

Suy ra biểu thức B luôn có tử lớn hơn mẫu 1 đơn vị tức B>1

Để B đạt GTLN thì x và y phải càng nhỏ

Mà \(x^2+y^2\)đạt giá trị nhỏ nhất khi \(x^2+y^2=0\)

Thay vào 

Ta có GTLN của B là 0,5

Bình luận (0)
LK
15 tháng 12 2017 lúc 22:22

Xin lỗi 1,5 nha ghi nhầm. Mong bn thông cảm

Bình luận (0)
NA
Xem chi tiết
NC
3 tháng 6 2019 lúc 13:46

Câu hỏi của đào mai thu - Toán lớp 7 - Học toán với OnlineMath

eM THAM khảo nhé!

Bình luận (0)
HP
Xem chi tiết
H24
5 tháng 4 2017 lúc 15:52

a. (x+2)2 >= 0

(y-1/5)2 >= 0

=> MinC = -10 khi x = -2, y = 1/5

b. (2x-3)2 + 5 >= 5

D đạt max khi mẫu đạt min (Mẫu > 0)

=> MaxD = 4/5 khi x = 3/2

Bình luận (0)
HN
Xem chi tiết
DT
15 tháng 5 2016 lúc 20:31

a) Ta có: \(\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)(với mọi x,y)

=>\(C=\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge-10\)

Dấu "=" xảy ra khi x=-2;y=1/5

Vậy GTNN của C là -10 tại x=-2;y=1/5

Bình luận (0)
DT
15 tháng 5 2016 lúc 20:34

b)Ta có: \(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+5\ge0\Rightarrow D=\frac{4}{\left(2x-3\right)^2+5}\le\frac{4}{5}\)

Dấu "=" xảy ra khi: x=3/2

Vậy GTLN của D là : 4/5 tại x=3/2

Bình luận (0)
HP
15 tháng 5 2016 lúc 20:35

b)B có GTLN <=> (2x-3)2+5 có GTNN

Vì (2x-3)2 > 0 với mọi x

=>(2x-3)2+5 > 5 với mọi x

=>GTNN của (2x-3)2+5 là 5

=>D = \(\frac{4}{\left(2x-3\right)^2+5}\) < \(\frac{4}{5}\)

=>GTLN của D là 4/5

Dấu "=" xảy ra <=> (2x-3)2=0<=>x=3/2

Vậy..............

Bình luận (0)
TH
Xem chi tiết
DN
6 tháng 1 2016 lúc 7:43

A=10 

B=-7

C=-5

D=-3

E=15

F=3

Bình luận (0)
TH
6 tháng 1 2016 lúc 13:06

bạn giải chi tiết ra giúp mình đc ko?

 

Bình luận (0)
TN
Xem chi tiết
LN
Xem chi tiết
HP
5 tháng 3 2016 lúc 21:32

B lớn nhất<=>x2+y2+2 nhỏ nhất

xét mẫu thức:x2 >= 0 với mọi x

y2 >= 0 với mọi y

=>x2+y2 >= 0 với mọi x,y

=>x2+y2+2 >= 2 với mọi x,y

=>GTNN của x2+y2+2=2

=>BMax=3/2

dấu "=" xảy ra<=>x=y=0

Bình luận (0)
H24
5 tháng 3 2016 lúc 21:29

\(B=\frac{x^2+y^2+3}{x^2+y^2+3}=0\)

ta có: x^2>/0; y^2>/0

dấu "=" xảy ra khi x=0 và y=0

khi đó B=0

vậy GTNN của B=0 tại x=y=0

Bình luận (0)
ND
5 tháng 3 2016 lúc 21:31

B=1+1/x2+y2+2

  Ta có  x2+y2+2 > hoặc = 2

=>1/x+y2+2 < hoặc = 1/2

=>b< hoặc = 3/2

=>maxB=3/2

Bình luận (0)
VN
Xem chi tiết
DT
Xem chi tiết