tính giá trị biểu thức 1-1/2 + 1/3 - 1/4 + ....+ 1/2017 - 1/2018
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
tính giá trị biểu thức ;1\1*2*3+1\2*3*4+..............................+1\2017*2018*2019
Theo bài ra, ta có: \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2017.2018.2019}\)
\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2017.2018.2019}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2017.2018}-\frac{1}{2018.2019}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2018.2019}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2018.2019}\right)\)
Giải thích:
\(\frac{2}{1.2.3}=\frac{3}{1.2.3}-\frac{1}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3}\)
\(\frac{2}{2.3.4}=\frac{4}{2.3.4}-\frac{2}{2.3.4}=\frac{1}{1.2}-\frac{1}{3.4}\)
................................................................................
\(\frac{2}{2017.2018.2019}=\frac{2019}{2017.2018.2019}-\frac{2017}{2017.2018.2019}=\frac{1}{2017.2018}-\frac{1}{2018.2019}\)
Tính giá trị biểu thức biết:
A= 2018/1+2017/2+2016/3+.....+1/2018 ; B= 1/2+1/3+1/4+.....+1/2019
Tính A:B
\(A=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{1}{2018}\)
\(A=1+\left(1+\frac{2017}{2}\right)+\left(1+\frac{2016}{3}\right)+...+\left(1+\frac{1}{2018}\right)\)
\(A=\frac{2019}{2019}+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2018}\)
\(A=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)\)
Ta có: \(\frac{A}{B}=\frac{2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}}=2019\)
Tính giá trị của biểu thức P=(1/2-1).(1/3-1).(1/4-1)...(1/2017-1).(1/2018-1)
P=(1/2-1).(1/3-1).(1/4-1)......(1/2017-1). (1/2018-1)
Ta có:
Số số hạng:(2018-2):1+1=2017( số)
Do 2017 là số lẻ nên,ta có:
P=(-1/2).(-2/3).(-3/4).....(-2015/2016). (-2016/2017).(-2017/2018)
P=-1/2018
Tinh gia chi bieu thuc 2018 : 1/2 + 2018 : 1/3 + 2018 : 1/4 + 2018
tính giá trị biểu thức B= 2018 + 2018/1+2 +....+ 2018/1+2+3+..+2017
cho A =1+2^2018+3^2017+4^2016+...+2018^2+2019,B=1+2^2017+3^2016+...+2017^2+2018,chứng tỏ giá trị biểu thức A-3B dương
hình như cái này đâu phải toán lớp 5 đâu bạn
cho A =1+2^2018+3^2017+4^2016+...+2018^2+2019,B=1+2^2017+3^2016+...+2017^2+2018,chứng tỏ giá trị biểu thức A-3B dương
1 Hãy tính giá trị của biểu thức
A = (1- 1/2 ) . ( 1-1/3 ) . ( 1 - 1/4 ) ....( 1 và 1/2017 ) . ( 1 và 1/2018 )
= (1 - 1/2).(1 - 1/3).(1 - 1/4) ... (1 - 1/2017)
=1/2 .2/3.3/4.......2016/1017
=1.2.3.4....2016/2.3.4.5...2017
=1.(2.3.4..2016)/(2.3.4..2016).2017
=1/2017( chia cả tử và mẫu cho 2.3.4.2016)
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{2017}\right)\left(1-\frac{1}{2018}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{2016}{2017}.\frac{2017}{2018}\)
\(=\frac{1}{2018}\)
P/S: chúc bạn học tốt
Tính giá trị của biểu thức: \(A=\sqrt{1+2017^2+\dfrac{2017^2}{2018^2}}+\dfrac{2017}{2018}\)
Đặt \(2017=a\)
\(A=\sqrt{1+a^2+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}\\ A=\sqrt{\left(a+1\right)^2-2a+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}\\ A=\sqrt{\left(a+1\right)^2-2\left(a+1\right)\cdot\dfrac{a}{a+1}+\left(\dfrac{a}{a+1}\right)^2}+\dfrac{a}{a+1}\\ A=\sqrt{\left(a+1-\dfrac{a}{a+1}\right)^2}+\dfrac{a}{a+1}\\ A=\left|a+1-\dfrac{a}{a+1}\right|+\dfrac{a}{a+1}\)
Ta có \(\dfrac{a}{a+1}< 1\Leftrightarrow a+1-\dfrac{a}{a+1}>0\)
\(\Leftrightarrow A=a+1-\dfrac{a}{a+1}+\dfrac{a}{a+1}=a+1=2018\)
Chuyển các hỗn số thành phân số rồi tính giá trị biểu thức sau:
A= \(1\dfrac{1}{2019}\)× \(1\dfrac{1}{2018}\)×\(1\dfrac{1}{2017}\)×...×\(1\dfrac{1}{2}\)
Giá trị biểu thức của A là.......
2020/2019 x 2019/2018 x 2018/2017 x....................3/2
= 2020/2
= 1010
\(A=1\dfrac{1}{2019}\times1\dfrac{1}{2018}\times1\dfrac{1}{2017}\times...\times1\dfrac{1}{2}\)
\(=\dfrac{2020}{2019}\times\dfrac{2019}{2018}\times\dfrac{2018}{2017}\times...\times\dfrac{3}{2}\)
\(=\dfrac{2020}{2}\)
\(=1010\)