Những câu hỏi liên quan
LQ
Xem chi tiết
NQ
21 tháng 2 2018 lúc 19:51

Nhận xét : số chính phương chia 3 dư 0 hoặc 1

+, Nếu x và y đều ko chia hết cho 3 => x^2 và y^2 đều chia 3 dư 1

=> x^2+y^2 chia 3 dư 2 ( ko t/m )

+, Nếu trong 2 số có 1 số chia hết cho 3 , 1 số ko chia hết cho 3

=> x^2+y^2 chia 3 dư 1 ( ko t/m )

Vậy để x^2+y^2 chia hết cho 3 thì x và y đều chia hết cho 3

Tk mk nha

Bình luận (0)
N1
Xem chi tiết
PK
Xem chi tiết
ST
3 tháng 1 2018 lúc 21:05

Giả sử ay - bx chia hết cho x+y

Mà ax-by chia hết cho x+y

=>(ax-by)+(ay-bx) chia hết cho x+y

=> ax-by+ay-bx chia hết cho x+y

=> (ax+ay)-(bx+by) chia hết cho x+y

=> a(x+y)-b(x+y) chia hết cho x+y

=> (a-b)(x+y) chia hết cho x+y (đúng)

=> giả sử đúng

Vậy ay-bx chia hết cho x+y

Bình luận (0)
GV
4 tháng 1 2018 lúc 9:33

Ta có: (a - b)(x + y) luôn chia hết cho (x + y)

Theo giả thiết ax - by chia hết cho (x + y)

=> (a - b) (x + y)  - (ax - by) chia hết cho (x + y)

=> ax + ay -bx -by - ax + by chia hết cho (x + y)

=> ay - bx chia hết cho 9x + y)

(ĐPCM)

Bình luận (0)
NA
Xem chi tiết
H24
Xem chi tiết
LC
Xem chi tiết
ZZ
17 tháng 7 2019 lúc 10:01

Ta thấy \(x^{2002}+x^{2000}+1\) có dạng \(x^{3m+1}+x^{3n+1}+1\)

Ta sẽ đi chứng minh \(x^{3m+1}+x^{3n+1}+1⋮x^2+x+1\)

Thật vậy,ta có:

\(x^{3m+1}+x^{3n+2}+1\)

\(=x^{3m+1}-x+x^{3n+2}-x^2+x^2+x+1\)

\(=x\left(x^{3m}-1\right)-x^2\left(x^{3n}-1\right)+\left(x^2+x+1\right)\)

Mà \(x^{3m}-1⋮x^2+x+1;x^{3n}-1⋮x^2+x+1\) nên \(x^{3m+1}+x^{3n+2}+1⋮x^2+x+1\)

Bình luận (0)
H24
Xem chi tiết
DA
Xem chi tiết
LL
17 tháng 9 2021 lúc 19:54

a) \(x\left(x^2-2x\right)+\left(x-2x\right)=x^2\left(x-2\right)+x\left(x-2\right)=\left(x-2\right)\left(x^2+x\right)⋮x-2\forall x,y\in Z\)

b) \(x^3y^2-3yx^2+xy=xy\left(x^2y-3x+1\right)⋮xy\forall x,y\in Z\)

c) \(x^3y^2-3x^2y^3+xy^2=xy^2\left(x^2-3xy+1\right)⋮\left(x^2-3xy+1\right)\forall x,y\in Z\)

Bình luận (0)
PA
Xem chi tiết
CH
12 tháng 3 2018 lúc 10:13

Ta có : \(x^2+2012x+2011^{2011}-1=0\)

\(\Leftrightarrow x^2+2012x+1006^2=2011^{2011}+1+1006^2\)

\(\Rightarrow\left(x+1006\right)^2=2011^{2011}+1+1006^2\)

Giả sử x là một số nguyên thì VT là một số chính phương.

Khi đó VP cũng là số chính phương.

Lại có 20112011 có tận cùng là chữ số 1, 10062 có tận cùng là chữ số 6 nên VP có tận cùng là chữ số 8.

Lại có không một số chính phương nào có tận cùng là chữ số 8 hay VP không là số chính phương.

Vậy giả sử sai hay không tồn tại số nguyên x thỏa mãn phương trình trên. 

Bình luận (0)