Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
TH
Xem chi tiết
MT
13 tháng 1 2016 lúc 5:21

 

D = 1.2 + 2.3+ 3.4 +...+ 99.100

=>3D=1.2.3+2.3.3+3.4.3+...+99.100.3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+....+99.100.(101-98)

=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100

=99.100.101-0.1.2

=99.100.101

=999900

=>D=999900:3=333300

 

Dn = 1.2 + 2.3 + 3.4 +...+ n (n +1)

=>3Dn=1.2.3+2.3.3+3.4.3+...+n(n+1).3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]

=1.2.3-0.1.2+2.3.4-1.2.3+2.3.4-2.3.4+....+n(n+1)(n+2)-(n-1)n(n+1)

=n.(n+1).(n+2)-0.1.2

=n.(n+1)(n+2)

=>Dn=n.(n+1)(n+2):3

 =>điều cần chứng minh

Bình luận (0)
BT
Xem chi tiết
H24
30 tháng 9 2023 lúc 16:35
Bài 1: Tính A = 1.2 + 2.3 + 3.4 +...+n. (n+1)Giai: 

=> Ta thấy rằng mỗi số hạng trong dãu số trên đều là tích của hai số tự nhiên liên tiếp, khi đó: 

Gọi a1 = 1.2  → 3a1 = 1.2.3 → 3a1 = 1.2.3 - 0.1.2

Tương tự:

a2 = 2.3 → 3a2 = 2.3.3 → 3a2 = 2.3.4 - 1.2.3

a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4  ....

a(n - 1) = (n - 1).n → 3a(n - 1) = 3(n - 1)n → 3a(n - 1) = (n - 1).n.(n + 1) - (n - 2).(n - 1).n

an = n.(n - 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)

Cộng vế với vế của các đẳng thức trên ta được: 

3(a1 + a2 + a3 +...+ an) = n(n + 1)(n + 2) 

-> A = n.(n+1) .( n+2) / 3

 

 
Bình luận (3)
AH
30 tháng 9 2023 lúc 16:46

Lời giải:

$A=1.2+2.3+3.4+...+n(n+1)$

$3A=1.2.3+2.3.3+3.4.3+....+n(n+1).3$

$3A=1.2.3+2.3(4-1)+3.4(5-2)+....+n(n+1)[(n+2)-(n-1)]$

$3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+n(n+1)(n+2)-(n-1)n(n+1)$

$=[1.2.3+2.3.4+3.4.5+....+n(n+1)(n+2)]-[1.2.3+2.3.4+....+(n-1)n(n+1)]$
$=n(n+1)(n+2)$

$\Rightarrow A=\frac{n(n+1)(n+2)}{3}$

Bình luận (1)
NN
Xem chi tiết
NN
20 tháng 10 2020 lúc 20:49

\(A=1.2+2.3+3.4+.......+\left(n-1\right).n\)

\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+......+\left(n-1\right).n.3\)

\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+.....+\left(n-1\right).n.\left[\left(n+1\right)-\left(n-2\right)\right]\)

\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+......+\left(n-1\right).n\left(n+1\right)-\left(n-1\right).n\left(n-2\right)\)

\(=\left(n-1\right).n.\left(n+1\right)\)

\(\Rightarrow A=\frac{\left(n-1\right).n.\left(n+1\right)}{3}\)( đpcm )

Bình luận (0)
 Khách vãng lai đã xóa
DH
20 tháng 10 2020 lúc 20:34

lol why lol 

Bình luận (0)
 Khách vãng lai đã xóa
XC
Xem chi tiết
AH
21 tháng 10 2024 lúc 23:56

Lời giải:

$A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{n(n+1)}$

$=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{(n+1)-n}{n(n+1)}$

$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}$

$=1-\frac{1}{n+1}=\frac{n}{n+1}$
Ta có đpcm.

Bình luận (0)
VA
Xem chi tiết
SF
20 tháng 6 2017 lúc 18:50

A= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)] 
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)] 
=n(n+1)(n+2) 
=>A

Bình luận (0)
VN
20 tháng 6 2017 lúc 18:58

ta có : A = 1.2 + 2.3 + 3.4 + ...... + n(n + 1) 

=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ...... + n(n + 1)(n + 2)

=> 3A = n(n + 1)(n + 2)

=> A = n(n + 1)(n + 2)/3 

Bình luận (0)
H24
Xem chi tiết
AL
9 tháng 8 2016 lúc 11:54

\(A=1.2+2.3+...+n\left(n+1\right)\)

\(=>3A=\left(3-0\right).1.2+\left(4-1\right).2.3+...+\left[\left(n+2\right)-\left(n-1\right)\right].n.\left(n+1\right)\)

\(=3.1.2-0.1.2+4.2.3-1.2.3+...+\left(n+2\right).n.\left(n+1\right)-\left(n-1\right).n.\left(n+1\right)\)

\(=1.2.3-0.1.2+2.3.4-1.2.3+...+n.\left(n+1\right).\left(n+2\right)-\left(n-1\right).n.\left(n+1\right)\)

\(=-0.1.2+n.\left(n+1\right).\left(n+2\right)\)

\(=n.\left(n+1\right).\left(n+2\right)\)

\(=>A=\frac{n.\left(n+1\right).\left(n+2\right)}{3}\)

Bình luận (0)
H24
9 tháng 8 2016 lúc 11:57

Có 2 cách

Bình luận (0)
H24
9 tháng 8 2016 lúc 11:58

Lời giải:

Cách 1:

Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó: 

Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a= 1.2.3 - 0.1.2
      a2 = 2.3 → 3a2 = 2.3.3 → 3a= 2.3.4 - 1.2.3
      a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
      …………………..
      an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
      an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)

Cộng từng vế của các đẳng thức trên ta có:

3(a1 + a2 + … + an) = n(n + 1)(n + 2)

Cách 2: Ta có

3A = 1.2.3 + 2.3.3 + … + n(n + 1).3 = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)] = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1) = n(n + 1)(n + 2) 
 

* Tổng quát hoá ta có:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …

Ta dễ dàng chứng minh công thức trên như sau:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)[(k + 2) - (k - 1)] = 3k(k + 1)

Bài 2. Tính B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)

Lời giải

Áp dụng tính kế thừa của bài 1 ta có:

4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4

= 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1)n(n + 1)(n + 2) - [(n - 2)(n - 1)n(n + 1)]

= (n - 1)n(n + 1)(n + 2) - 0.1.2.3 = (n - 1)n(n + 1)(n + 2)

Bình luận (0)
QH
Xem chi tiết
H24
28 tháng 1 2016 lúc 21:59

=>3A=1.2.3+2.3.4+...+n(n+1)3

=>3A=1.2.3+2.3(4-1)+...+n(n+1)[(n+2)-(n-1)]

=>3A=1.2.3+(2.3.4-1.2.3)+...+[n(n+1)(n+2)-(n-1)n(n+1)]

=>3A=n(n+1)(n+2)

=>A=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

Bình luận (0)
TB
Xem chi tiết
VT
26 tháng 10 2016 lúc 9:50

Không thể quy đồng mẫu số các phân số ở VT . Cần tách mỗi phân số thành hiệu 2 phân số . Nhận xét :

Do đó : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}=\frac{n-1}{n}\)

=> Bài toán đã được cm

Bình luận (0)
H24
Xem chi tiết
AH
30 tháng 6 2024 lúc 20:45

Lời giải:

$A=1.2+2.3+3.4+...+(n-1)n$

$3A=1.2(3-0)+2.3(4-1)+3.4(5-2)+....+(n-1)n[(n+1)-(n-2)]$

$=[1.2.3+2.3.4+3.4.5+...+(n-1)n(n+1)]-[1.2.3+2.3.4+....+(n-2)(n-1)n]$

$=(n-1)n(n+1)$

$\Rightarrow A=\frac{n(n-1)(n+1)}{3}$

Bình luận (0)