Cho A=1/4+1/5+1/6+...+1/15
Chứng tỏ rằng A<2
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho B=1/4+1/5+1/6+1/7+1/8+...+1/15
Chứng tỏ B<2
cho A=1/4+1/5+1/6+1/7+1/8+..........+1/14+1/15
chứng tỏ rằng A<2
Ta có:
\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}< \frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}\)
Mà \(\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{1}{4}.4=1\)
=>\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}< 1\) (1)
\(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}\)Mà \(\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{1}{8}.8=1\)
=> \(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< 1\) (2)
Từ (1) và (2)
=> A=\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+...+\frac{1}{14}+\frac{1}{15}< 1+1\)
=> A<2
Cho A =1-1/2+1/3-1/4+...+1/49-1/50 Hãy chứng tỏ rằng 7/12<A<5/6
Cho A=1-1/2 +1/3 -1/4 +...+1/49 -1/50 Hãy chứng tỏ rằng 7/12<A<5/6
giúp mik
tìm x
a 2 (x^3 - 1 ) - 2x^2 ( x +2x^4 ) + ( 4x^5 +4 ) x =6
b (2x)^2 (4x - 2 ) - ( x^3 -8x^3 )=15
chứng tỏ giá trị của biểu thức sau ko phụ thuộc vào giá trị của biến
a P = x ( 2x + 1 ) - x^2 ( x + 2 ) + x^3 - x +3
b Q = x (2x^2 -4x +8 ) +12x^2 (1/3 _1/6x ) -8x +9
\(a,2\left(x^3-1\right)-2x^2\left(x+2x^4\right)+x\left(4x^5+4\right)=6\\ \Leftrightarrow2x^3-2-2x^3-4x^6+4x^6+4x-6=0\\ \Leftrightarrow4x-8=0\\ \Leftrightarrow x=2\\ b,\left(2x\right)^2\left(4x-2\right)-\left(x^3-8x^3\right)=15\\ \Leftrightarrow4x^2\left(4x-2\right)+7x^3-15=0\\ \Leftrightarrow16x^3-8x^2+7x^3-15=0\\ \Leftrightarrow23x^3-8x^2-15=0\\ \Leftrightarrow23x^3-23x^2+15x^2-15x+15x-15=0\\ \Leftrightarrow\left(x-1\right)\left(23x^2+15x-15\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x\in\varnothing\left(23x^2+15x-15>0\right)\end{matrix}\right.\)
Bài 1:
a: Ta có: \(2\left(x^3-1\right)-2x^2\left(2x^4+x\right)+x\left(4x^5+4\right)=6\)
\(\Leftrightarrow2x^3-2-4x^6-2x^3+4x^6+4x=6\)
\(\Leftrightarrow4x=8\)
hay x=2
b: Ta có: \(\left(2x\right)^2\cdot\left(4x-2\right)-\left(x^3-8x^3\right)=15\)
\(\Leftrightarrow4x^2\left(4x-2\right)-x^3+8x^3=15\)
\(\Leftrightarrow16x^3-8x^2+7x^3=15\)
\(\Leftrightarrow23x^3-8x^2-15=0\)
\(\Leftrightarrow23x^3-23x^2+15x^2-15=0\)
\(\Leftrightarrow23x^2\left(x-1\right)+15\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(23X^2+15x+15\right)=0\)
\(\Leftrightarrow x-1=0\)
hay x=1
Bài 2:
a: Ta có: \(P=x\left(2x+1\right)-x^2\left(x+2\right)+x^3-x+3\)
\(=2x^2+x-x^3-2x^2+x^3-x+3\)
=3
b: ta có: \(Q=x\left(2x^2-4x+8\right)+12x^2\left(\dfrac{1}{3}-\dfrac{1}{6}x\right)-8x+9\)
\(=2x^3-4x^2+8x+4x^2-2x^3-8x+9\)
=9
Cho phân số a/b = 1/2+1/3+1/4+1/5+1/6+1/7+1/8+1/9. Chứng tỏ rằng a chia hết cho 11
\(A=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{9}⋮11\)
\(A=\frac{11}{22}+\frac{11}{33}+...+\frac{11}{99}⋮11\)
\(A=11.\left(\frac{1}{22}+\frac{1}{33}+...+\frac{1}{99}\right)⋮11\)
\(\Rightarrow A⋮11\)(vì tổng A có thể tách thành một tích nhân với 11)
(mình làm sai nhớ đừng ném đá mình)
chỗ tổng A có thể tách ... bạn nhớ sửa là tổng A có thể tách thành một tích có thừa số 11 nhé bạn
Cho p , p+ 6 , p+8 , p+12 là các số nguyên tố. Chứng tỏ rằng p + 4 là hợp số .
Cho a là SNT > 3. Chứng tỏ rằng (a-1) . (a+4) chia hết cho 6
Cho p là SNT > 3 . Chứng tỏ rằng (p-1) . (p+1) chia hết cho 24
1)
+)Xét trường hợp p=2 =>p+6= 8 là hợp số (trái với giả thiết)
+) Xét trường hợp p=3 =>p+12=15 là hợp số (trái với giả thiết)
+)Xét trường hợp p>3 =>p có một trong hai dạng :3k+1 ; 3k+2
Nếu p= 3k+1 =>p+8=3k+8+1=3k+9 chia hết cho 3
=>p+8 là hợp số (trái với giả thiết )
Vậy p phải có dạng là 3k+2
Nếu p=3k+2 =>p+4 = 3k+2+4 = 3k+6 =3.(k+2)=>p+4 chia hết cho 3
=>p+4 là hợp số (đpcm)
a)Cho B=1/5+1/6+...+1/19.Hãy chứng tỏ rằng B >1
b)Tính nhanh giá trị biểu thức M=3/5+3/7+3/11 trên 4/5+4/7-4/11
c)Chứng tỏ rằng S<1 biết S=3/1x4+3/4x7+3x7x10+...+3/40x43+3/43x46
Giúp Mình mấy bài này với nhe!!!
1. Cho Y = 1+3+32+33+.....+398
Chứng tỏ rằng Y⋮13.
2. Cho A = 1+3+32+33.....+32018+32019
Chứng tỏ rằng A⋮4.
3. 2.(x+4)+5=65 (Tìm x).
4.Cho A = 119+ 118+117+.....+11+1. Chứng minh rằng A⋮5. Phần A nha!!!
B) Chứng minh rằng với mọi số tự nhiên n thì n2+n+1 không chia hết cho 4.
5. a) 96-3.(x+1)=42 ( Tìmx )
b) 15x-9x+2x=72
c) 3x+2+3x=10
6. a) 125-3.(x+8)=77
b) (7x-11)3= 22.52- 73
c) 5x+1+5x+2= 750
d) (2x-1)2018= (2x-1)2019.
\(1,Y=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\\ Y=\left(1+3+3^2\right)\left(1+3^3+...+3^{96}\right)\\ Y=13\left(1+3^3+...+3^{96}\right)⋮13\\ 2,A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{2018}+3^{2019}\right)\\ A=\left(1+3\right)\left(1+3^2+...+3^{2019}\right)\\ A=4\left(1+3^2+...+3^{2019}\right)⋮4\\ 3,\Leftrightarrow2\left(x+4\right)=60\Leftrightarrow x+4=30\Leftrightarrow x=36\)