Tìm giá trị nhỏ nhất của A= -4 / {[(2x+1)^10] +2}
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
tìm giá trị nhỏ nhất của biểu thức A=x^4+2x^2+|x|+10^2-1 là
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)
1. Tìm giá trị nhỏ nhất của
a) P(x) = x^2018 + 4x^2 + 10
b) M(x) = x^2 + x +1
2. Tìm giá trị lớn nhất của
a) Q(x) = -x^4 - 1
b) N(x) = -x^2 + 2x -2
Bài 1a)
\(P\left(x\right)=x^{2018}+4x^2+10\)
VÌ \(x^{2018}\ge0\forall x;4x^2\ge0\forall x\)
\(\Rightarrow x^{2018}+4x^2+10\ge10\forall x\)
Hay \(P\left(x\right)\ge10\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Bài 1b)
\(M\left(x\right)=x^2+x+1\)
\(M\left(x\right)=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(M\left(x\right)=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{-1}{2}\)
Bài 2a)
\(Q\left(x\right)=-x^4-1\)
Vì \(-x^4\le0\forall x\)
\(\Rightarrow-x^4-1\le-1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
tìm giá trị nhỏ nhất của biểu thức : A = 2x^2 -8x +10 + (y-3)^4
A = 2x^2 - 8 x + 10 + (y-3)^4
A = (2x^2 - 8x + 8) + (y-3)^4 + 2
A = 2.(x^2 - 4x + 4) + (y-3)^4 + 2
A = 2.(x^2-2)^2 + (y-3)^4 + 2 >= 2.
Dấu "=" xảy ra <=> x^2 - 2 = 0 và y - 3 = 0
<=> x = \(\pm\sqrt{2}\)và y = 3.
Vậy Min A = 2 <=> x = \(\pm\sqrt{2}\)và y = 3
a. Tìm giá trị lớn nhất của biểu thức: B = 10\(-5-\left(2x-5\right)^2\)
b. Tìm giá trị nhỏ nhất của biểu thức :C = |2x -4|- |2x- 6|
a. ta có (2x-5)2 >= 0 với mọi x thuộc R
vậy 5 -(2x-5)2 <= 5
dấu = xảy ra khi (2x-5)2=0
vậy 2x-5=0
2x =5
x= 5/2=2,5
Vậy để B lớn nhất thì x=2,5
b. ta có | 2x-4| >= 0 với mọi x thuộc R
| 2x-6| >= 0 với mọi x thuộc R
vậy | 2x-4 |- |2x-6| >= 0
dấu = xảy ra khi |2x-4| và |2x-6| đều bằng 0
=> 2x-4=0 => 2x - 6=0
2x =4 2x =6
x=4/2=2 x= 6/2=3
Với x là số nguyên.
a) Tìm giá trị nhỏ nhất của biểu thức: M = (2x - 4)4 + 5.
b) Tìm giá trị lớn nhất của biểu thức: N = 10 - / x + 2 /
a) Ta có: \(\left(2x-4\right)^4\ge0\forall x\)
\(\Leftrightarrow\left(2x-4\right)^4+5\ge5\forall x\)
Dấu '=' xảy ra khi 2x-4=0
\(\Leftrightarrow2x=4\)
hay x=2
Vậy: Giá trị nhỏ nhất của biểu thức \(M=\left(2x-4\right)^2+5\) là 5 khi x=2
b) Ta có: \(\left|x+2\right|\ge0\forall x\)
\(\Leftrightarrow-\left|x+2\right|\le0\forall x\)
\(\Leftrightarrow\left|x+2\right|+10\le10\forall x\)
Dấu '=' xảy ra khi x+2=0
hay x=-2
Vậy: Giá trị lớn nhất của biểu thức \(N=10-\left|x+2\right|\) là 10 khi x=-2
Tìm giá trị nhỏ nhất của biểu thức A = |1 - 2x| + |4x - 2| - 10
Các thím giúp mình với, đang cần gấp:
tìm giá trị nhỏ nhất của đa thức: 2(x+10)^2-3
tìm giá trị lớn nhất của đa thức 4-(2x-1)^3
tìm giá trị của biểu thức 7x^2-5
Các thím giúp mình với, đang cần gấp:
tìm giá trị nhỏ nhất của đa thức: 2(x+10)^2-3
tìm giá trị lớn nhất của đa thức 4-(2x-1)^3
tìm giá trị của biểu thức 7x^2-5