Tìm x ϵ Z biết:
\(\dfrac{-1}{5}\le\dfrac{x}{8}\le\dfrac{1}{4}\)
tìm \(x\in Z\) \(\)sao cho
\(\dfrac{-1}{5}\le\dfrac{x}{40}< \dfrac{-1}{8}\)
⇔−840≤x40≤−540
⇔−8≤x≤−5
Mà x∈Z
⇒x∈{−8;−7;−6;−5}
\(\dfrac{-1}{5}\le\dfrac{x}{40}\le\dfrac{-1}{8}\)
\(\Leftrightarrow\dfrac{-8}{40}\le\dfrac{x}{40}\le\dfrac{-5}{40}\)
\(\Leftrightarrow-8\le x\le-5\)
Mà x\(\in Z\)
\(\Rightarrow x\in\left\{-8;-7;-6;-5\right\}\)
Vậy ...
\(\dfrac{-1}{5}\le\dfrac{x}{40}< \dfrac{-1}{8}\)
<=>\(\dfrac{-8}{40}\le\dfrac{x}{40}< \dfrac{-5}{40}\)
\(\Leftrightarrow-8\le x< 5\)
Mà \(x\in Z\)
\(\Rightarrow x\in\left\{-8;-7;-6\right\}\)
Vậy
tìm x biết \(\dfrac{-1}{8}< \dfrac{x}{72}\le\dfrac{-1}{36}\left(vớix\in z\right)\)
\(-\dfrac{1}{8}< \dfrac{x}{72}\le-\dfrac{1}{36}\)
\(\Rightarrow\dfrac{-9}{72}< \dfrac{x}{72}\le-\dfrac{2}{72}\)
\(\Rightarrow x\in\left\{-8;-7;-6;-5;-4;-3;-2\right\}\)
`(-1)/8 < x/72 <= (-1)/36`
`(-1xx9)/(8xx9) < x/72 <= (-1xx2)/(36xx2)`
`(-9)/72 < x/72 <= (-2)/72`
`-> -9< x <= (-2)`
`-> x=-8;-7;-6;-5;-4;-3;-2`
`@ yngoc`
\(\dfrac{-29}{12}+1+\dfrac{19}{-12}\)\(\le\)x\(\le\dfrac{-1}{3}+\dfrac{3}{4}+\dfrac{7}{12}\)
\(\dfrac{-5}{3}+1+\dfrac{1}{-3}\le x\le\dfrac{8}{10}+\dfrac{1}{5}+2\)
Tìm các số nguyên x,y biết:
a)\(\dfrac{6}{2x+1}=\dfrac{2}{7}\)
b) \(\dfrac{24}{7x-3}=\dfrac{-4}{25}\)
c) \(\dfrac{4}{x-6}=\dfrac{y}{24}=\dfrac{-12}{18}\)
d) \(\dfrac{-1}{5}\le\dfrac{x}{8}\le\dfrac{1}{4}\)
e) \(\dfrac{x+46}{20}=x\dfrac{2}{5}\)
f) \(y\dfrac{5}{y}=\dfrac{86}{y}\) ( \(x\dfrac{2}{5};y\dfrac{5}{y}\) là các hỗn số)
a,\(\dfrac{6}{2x+1}=\dfrac{2}{7}\)
⇒\(\dfrac{6}{2x+1}=\dfrac{6}{21}\)
⇒\(2x+1=21\)
\(2x=21-1\)
\(2x=20\)
⇒\(x=10\)
tìm x,y ϵ Z : \(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)
\(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\left(x;y\in Z\right)\)
\(MSC:8x\left(x\ne0\right)\)
\(pt\Leftrightarrow\dfrac{40+2xy}{8x}=\dfrac{x}{8x}\)
\(\Leftrightarrow40+2xy=x\)
\(\Leftrightarrow x-2xy=40\)
\(\Leftrightarrow x\left(1-2y\right)=40\)
\(\Leftrightarrow x;\left(1-2y\right)\in U\left(40\right)=\left\{-1;1;-2;2;-4;4;-5;5;-8;8;-10;10;-20;20;-40;40\right\}\)
Bạn lập bảng sẽ tìm ra các cặp \(\left(x;y\in Z\right)\) nhé!
BT3: Tìm x, biết:
7) \(\dfrac{-5}{17}+\dfrac{3}{17}\le\dfrac{x}{17}\le\dfrac{13}{17}+\dfrac{-11}{17}\)
8) \(\dfrac{2}{3}\left(\dfrac{1}{2}+\dfrac{3}{4}-\dfrac{1}{3}\right)\le\dfrac{x}{18}\le\dfrac{7}{3}\left(\dfrac{1}{2}-\dfrac{1}{6}\right)\)
7) \(\dfrac{-5}{17}+\dfrac{3}{17}\le\dfrac{x}{17}\le\dfrac{13}{17}+\dfrac{-11}{17}\)
\(\Rightarrow\dfrac{-2}{17}\le\dfrac{x}{17}\le\dfrac{2}{17}\)
\(\Rightarrow-2\le x\le2\)
\(\Rightarrow x\in\left\{-2;-1;0;1;2\right\}\)
8) \(\dfrac{2}{3}\left(\dfrac{1}{2}+\dfrac{3}{4}-\dfrac{1}{3}\right)\le\dfrac{x}{18}\le\dfrac{7}{3}\left(\dfrac{1}{2}-\dfrac{1}{6}\right)\)
\(\Rightarrow\dfrac{2}{3}\left(\dfrac{6}{12}+\dfrac{9}{12}-\dfrac{4}{12}\right)\le\dfrac{x}{18}\le\dfrac{7}{3}\left(\dfrac{6}{12}-\dfrac{2}{12}\right)\)
\(\Rightarrow\dfrac{2}{3}\cdot\dfrac{11}{12}\le\dfrac{x}{18}\le\dfrac{7}{3}\cdot\dfrac{4}{12}\)
\(\Rightarrow\dfrac{22}{36}\le\dfrac{x}{18}\le\dfrac{28}{36}\)
\(\Rightarrow\dfrac{11}{18}\le\dfrac{x}{18}\le\dfrac{14}{18}\)
\(\Rightarrow x\in\left\{11;12;13;14\right\}\)
8) \(\dfrac{2}{3}\left(\dfrac{1}{2}+\dfrac{3}{4}-\dfrac{1}{3}\right)\le\dfrac{x}{18}\le\dfrac{7}{3}\left(\dfrac{1}{2}-\dfrac{1}{6}\right)\\ \dfrac{2}{3}\left(\dfrac{6}{12}+\dfrac{9}{12}-\dfrac{4}{12}\right)\le\dfrac{x}{18}\le\dfrac{7}{3}\left(\dfrac{3}{6}-\dfrac{1}{6}\right)\\ \dfrac{2}{3}.\dfrac{11}{12}\le\dfrac{x}{18}\le\dfrac{7}{3}.\dfrac{2}{6}\\ \dfrac{11}{18}\le\dfrac{x}{18}\le\dfrac{14}{18}\\ \Rightarrow11\le x\le14\\ \Rightarrow x\in\left\{11;12;13;14\right\}\)
7) \(\dfrac{-5}{17}+\dfrac{3}{17}\le\dfrac{x}{17}\le\dfrac{13}{17}+\dfrac{-11}{17}\\ \dfrac{-2}{17}\le\dfrac{x}{17}\le\dfrac{2}{17}\\ \Rightarrow-2\le x\le2\\ \Rightarrow x\in\left\{-2;-1;0;1;2\right\}\)
a)x=\(\dfrac{1}{4}+\dfrac{2}{13}\)
b)\(\dfrac{x}{3}=\dfrac{2}{3}+\dfrac{-1}{7}\)
c)\(\dfrac{-8}{3}+\dfrac{-1}{3}\le x\le\dfrac{-2}{7}+\dfrac{-5}{7}\)
d)\(\dfrac{-5}{6}+\dfrac{8}{3}\dfrac{29}{-x}\le x\le\dfrac{-1}{2}+2+\dfrac{5}{2}\)
Chứng minh rằng: Với mọi x, y ϵ R ta có: \(\dfrac{x^2}{1+16x^4}+\dfrac{y^2}{1+16y^4}\le\dfrac{1}{4}\)
Áp dụng BĐT Cosi:
\(\dfrac{x^2}{1+16x^4}+\dfrac{y^2}{1+16y^4}\le\dfrac{x^2}{8x^2}+\dfrac{y^2}{8y^2}=\dfrac{1}{4}\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=\pm\dfrac{1}{2}\\y=\pm\dfrac{1}{2}\end{matrix}\right.\)
tìm x thộc z biết
\(\dfrac{1}{3}+\dfrac{-2}{5}+\dfrac{1}{6}+\dfrac{-1}{5}\le x< \dfrac{-3}{4}+\dfrac{3}{7}+\dfrac{-1}{4}+\dfrac{-3}{5}+\dfrac{1}{7}\)
x=-1
ve trai = -1/10con ve phai=-36/35