Những câu hỏi liên quan
H24
Xem chi tiết
ND
Xem chi tiết
H24
20 tháng 1 2024 lúc 16:13

Ta có: \(\dfrac{a+3c}{b+3d}=\dfrac{a+c}{b+d}\left(b\ne-d;b\ne-3d;b\ne0;d\ne0\right)\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

+, \(\dfrac{a+3c}{b+3d}=\dfrac{a+c}{b+d}=\dfrac{a+3c-\left(a+c\right)}{b+3d-\left(b+d\right)}=\dfrac{a+3c-a-c}{b+3d-b-d}=\dfrac{2c}{2d}=\dfrac{c}{d}\)

Khi đó: \(\dfrac{a+c}{b+d}=\dfrac{c}{d}\)

+, \(\dfrac{a+c}{b+d}=\dfrac{c}{d}=\dfrac{a+c-c}{b+d-d}=\dfrac{a}{b}\) (đpcm)

Bình luận (1)
NL
20 tháng 1 2024 lúc 16:15

Áp dụng t/c dãy tỉ số bằng nhau:

\(\dfrac{a+3c}{b+3d}=\dfrac{a+c}{b+d}=\dfrac{a+3c-\left(a+c\right)}{b+3d-\left(b+d\right)}=\dfrac{2c}{2d}=\dfrac{c}{d}\) (1)

\(\dfrac{a+3c}{b+3d}=\dfrac{a+c}{b+d}=\dfrac{3a+3c}{3b+3d}=\dfrac{a+3c-\left(3a+3c\right)}{b+3d-\left(3b+3d\right)}=\dfrac{-2a}{-2b}=\dfrac{a}{b}\) (2)

(1);(2) \(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)

Bình luận (1)
LH
Xem chi tiết
H24
28 tháng 7 2016 lúc 20:19

bạn áp dụng dãy tỉ số bằng nhau là xong

Bình luận (0)
DA
28 tháng 7 2016 lúc 22:17

1) \(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\)

-->\(\frac{a}{b}=\frac{a-c}{b-d}\left(đpcm\right)\)

2) ta có \(\frac{a}{b}=\frac{c}{d}\)

đặt a=kb và c=kd

\(\frac{a+b}{a-b}=\frac{kb+b}{kb-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)

\(\frac{c+d}{c-d}=\frac{kd+d}{kd-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)

từ (1) và (2) --> \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right)\)

Bình luận (0)
CV
Xem chi tiết
TT
Xem chi tiết
KS
6 tháng 10 2019 lúc 6:41

Ta có :

\(c=\frac{bd}{b-d}\)

\(\Rightarrow b-d=\frac{bd}{c}\left(c\ne0\right)\)

\(a=b+c\Rightarrow c=a-b\)

\(\Rightarrow c=\frac{bd}{b-d}=a-b\)

\(\Rightarrow bd=\left(a-b\right).\left(b-d\right)\)

\(\Rightarrow ab-ad-b^2+bd=bd\)

\(\Rightarrow a\left(b-d\right)-b^2=0\)

\(\Rightarrow a.\frac{bd}{c}-b^2=0\)

\(\Rightarrow\frac{ad}{c}-b=0\)

\(\Rightarrow\frac{ad-bc}{c}=0\)

\(\Rightarrow ad-bc=0\)

\(\Rightarrow ad=bc\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

Chúc bạn học tốt !!!

Bình luận (0)
BB
Xem chi tiết
NM
24 tháng 7 2018 lúc 10:08

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng t/c dãy tỷ số bằng nhau

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(dpcm\right)\)

Bình luận (0)
PD
24 tháng 7 2018 lúc 10:09

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\left(1\right)\)

Thay (1) vào từng biểu thức ta có :

\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\)

\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\)

\(\RightarrowĐPCM\)

Bình luận (0)
NH
Xem chi tiết
TM
1 tháng 5 2019 lúc 11:50

thêm cái ĐK cho mẫu số khác 0: \(b\ne d\)

Bình luận (0)
TD
Xem chi tiết
NL
Xem chi tiết
DT
29 tháng 7 2017 lúc 14:24

Hỏi đáp Toán

Bình luận (3)
KN
Xem chi tiết
ST
21 tháng 1 2018 lúc 20:00

Áp dụng TCDTSBN ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\) (vì a+b+c+d khác 0)

=>a=b=c=d

=>M=\(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{1}{2}\cdot4=2\)

Bình luận (0)
DK
23 tháng 1 2018 lúc 20:07

Ta có:a/b=b/c=c/d=d/a

Áp dụng tính chất dãy tỉ số bằng nhau, ta được:a/b=b/c=c/d=(a+b+c+d)/(b+c+d+a)=1

=>a=b=c=d(vì a/b=b/c=c/d=d/a=1)

Thay vào M sau đó tìm được M=2

Bình luận (0)