\(\frac{2}{3}+\frac{2}{9}+\frac{2}{27}+\frac{2}{81}+\frac{2}{243}=\)
1- \(\frac{2}{3}-\frac{2}{9}-\frac{2}{27}-\frac{2}{81}-\frac{2}{243}\)
\(\frac{2}{3}+\frac{2}{9}+\frac{2}{27}+\frac{2}{81}+\frac{2}{243}+\frac{2}{729}\)
\(\frac{2}{3}+\frac{2}{9}+\frac{2}{27}+\frac{2}{81}+\frac{2}{243}+\frac{2}{729}=\frac{728}{729}\)
Nhớ click cho mik nha !!!!!!!!!!!!!!!!!!!!
Đặt A= biểu thức trên
\(A=\frac{2}{3}+\frac{2}{3^2}+\frac{2}{3^3}+...+\frac{2}{3^6}\)
\(3A=3\left(\frac{2}{3}+\frac{2}{3^2}+...+\frac{2}{3^6}\right)\)
\(3A=2+\frac{2}{3}+...+\frac{2}{3^5}\)
\(3A-A=\left(2+\frac{2}{3}+...+\frac{2}{3^5}\right)-\left(\frac{2}{3}+\frac{2}{3^2}+...+\frac{2}{3^6}\right)\)
\(A=\frac{2-\frac{2}{3^6}}{2}\)
Tính
a) \(\frac{2}{3}+\frac{2}{9}+\frac{2}{27}+\frac{2}{81}+\frac{2}{243}+\frac{2}{729}\)
b) \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{37.38.39}\)
\(b,\)Đặt \(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{37\cdot38\cdot39}\)
\(B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+....+\frac{2}{37.38\cdot38}\)
\(2B=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{37.38}-\frac{1}{38.39}\)
\(2B=\frac{1}{1.2}-\frac{1}{38.39}\)
\(\Rightarrow B=\frac{\left(\frac{1}{1.2}-\frac{1}{38.39}\right)}{2}=\frac{185}{741}\)
⇒B =
2
1.2
1 −
38.39
1
=
741
( ) 18
Tính:
a) \(A=\frac{\frac{7}{8}+\frac{7}{27}-\frac{7}{49}}{\frac{11}{8}+\frac{11}{27}-\frac{11}{49}}\)
b)\(B=\frac{\frac{8}{9}-\frac{8}{27}-\frac{8}{81}+\frac{8}{243}}{4-\frac{4}{3}-\frac{4}{9}+\frac{4}{27}}\)
c)\(C=\frac{\frac{2}{7}+\frac{2}{5}+\frac{2}{17}-\frac{2}{293}}{\frac{3}{7}+\frac{3}{5}+\frac{3}{17}-\frac{3}{293}}\)
\(c)\) \(C=\frac{\frac{2}{7}+\frac{2}{5}+\frac{2}{17}-\frac{2}{293}}{\frac{3}{7}+\frac{3}{5}+\frac{3}{17}-\frac{3}{293}}\)
\(C=\frac{2\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}-\frac{1}{293}\right)}{3\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}-\frac{1}{193}\right)}\)
\(C=\frac{2}{3}\)
Bạn Cô nàng Thiên Bình làm đúng hết òi =.=
a=7.[1/8+1/27-1/49]
------------------------
11.[1/8+1/27-1/49]
=7/11
cau b,c tuong tu nha h mk
a)\(A=\frac{\frac{7}{8}+\frac{7}{27}-\frac{7}{49}}{\frac{11}{8}+\frac{11}{27}-\frac{11}{49}}\)
\(A=\frac{7.\left(\frac{1}{8}+\frac{1}{27}-\frac{1}{49}\right)}{11.\left(\frac{1}{8}+\frac{1}{27}-\frac{1}{49}\right)}\).
\(A=\frac{7}{11}\)
b)\(B=\frac{\frac{8}{9}-\frac{8}{27}-\frac{8}{81}+\frac{8}{243}}{4-\frac{4}{3}-\frac{4}{9}+\frac{4}{27}}\)
\(B=\frac{\frac{8}{9}.\left(1-\frac{1}{3}-\frac{1}{9}+\frac{1}{27}\right)}{4.\left(1-\frac{1}{3}-\frac{1}{9}+\frac{1}{27}\right)}\)
\(B=\frac{8}{9}:4=\frac{2}{9}\)
c)\(C=\frac{\frac{2}{7}+\frac{2}{5}+\frac{2}{17}-\frac{2}{293}}{\frac{3}{7}+\frac{3}{5}+\frac{3}{17}-\frac{3}{293}}\)\(C=\frac{2.\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}-\frac{1}{239}\right)}{3.\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}-\frac{1}{239}\right)}\)
C=\(\frac{2}{3}\)
\(A=\frac{\frac{1}{11}-\frac{1}{13}-\frac{1}{17}}{\frac{5}{11}-\frac{5}{13}-\frac{5}{17}}+\frac{\frac{-3}{3}-\frac{2}{9}-\frac{2}{27}+\frac{2}{81}}{\frac{7}{3}-\frac{7}{9}-\frac{7}{27}+\frac{7}{81}}\)
A = \(\frac{\frac{1}{11}-\frac{1}{13}-\frac{1}{17}}{\frac{5}{11}-\frac{5}{13}-\frac{5}{17}}+\frac{\frac{2}{3}-\frac{2}{9}-\frac{2}{27}+\frac{2}{81}}{\frac{7}{3}-\frac{7}{9}-\frac{7}{27}+\frac{7}{81}}\)
B = \(\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}+...+\frac{5^2}{56.81}\)
C = \(1-\frac{1}{3}-\frac{1}{6}-\frac{1}{10}-\frac{1}{15}-...-\frac{1}{1225}\)
a)
\(\Rightarrow A=\frac{\frac{1}{11}-\frac{1}{13}-\frac{1}{17}}{5\left(\frac{1}{11}-\frac{1}{13}-\frac{1}{17}\right)}+\frac{2\left(\frac{1}{3}-\frac{1}{9}-\frac{1}{27}+\frac{1}{81}\right)}{7\left(\frac{1}{3}-\frac{1}{9}-\frac{1}{27}+\frac{1}{81}\right)}\)
\(\Rightarrow A=\frac{1}{5}+\frac{2}{7}\)
\(\Rightarrow A=\frac{17}{35}\)
b)
\(\Rightarrow B=5\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+....+\frac{1}{56}-\frac{1}{61}\right)\)
\(\Rightarrow B=5\left(\frac{1}{11}-\frac{1}{61}\right)\)
\(\Rightarrow B=5.\frac{50}{671}=\frac{250}{671}\)
c)
\(\Rightarrow C=1-\left(\frac{1}{1.3}+\frac{1}{2.3}+\frac{1}{2.5}+....+\frac{1}{49.25}\right)\)
\(\Rightarrow C=1-2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{49.50}\right)\)
\(\Rightarrow C=1-2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}\right)\)
\(\Rightarrow C=1-1-\frac{1}{25}\)
\(\Rightarrow C=\frac{1}{25}\)
1.Tính nhanh
a)427-98
b)2*19*15+3*43*10+62*80
c)\(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
d)\(\left(1-\frac{1}{9}\right)\cdot\left(1-\frac{2}{9}\right)\cdot\left(1-\frac{3}{90}\right)\cdot.........\cdot\left(1-\frac{2018}{9}\right)\)
\(a)\) \(427-98=329\)
\(b)\) \(2\cdot19\cdot15+3\cdot43\cdot10+62\cdot80\)
\(=\left(2\cdot15\right)\cdot19+\left(3\cdot10\right)\cdot43+62\cdot80\)
\(=30\cdot19+30\cdot43+62\cdot80\)
\(=30\cdot\left(19+43\right)+62\cdot80\)
\(=30\cdot62+62\cdot80\)
\(=62\cdot\left(30+80\right)\)
\(=62\cdot110=6820\)
\(c)\) Đặt \(M=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
\(=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}+\frac{1}{3^6}\)
\(\Rightarrow3M=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\)
\(\Rightarrow3M-M=\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}+\frac{1}{3^6}\right)\)
\(\Rightarrow2M=1-\frac{1}{3^6}\)
\(\Rightarrow M=\frac{728}{2\cdot729}=\frac{364}{729}\)
Vậy \(M=\frac{364}{729}\)
1)\(\frac{27^4.9^3}{81^2}\)
2)\(\left(\frac{1}{5^{^{ }}}\right)^{2002}.\left(-5\right)^{2000}\)
3)\(\frac{4^{11}.4^5}{2^{31}}\)
4)\(3^2.\frac{1}{243}.81^2.\frac{1}{3^2}\)
5)\(4^2.\frac{25^2}{2^3.5^2}+32.125\)
\(\text{1, }\frac{27^4.9^3}{81^2}=\frac{\left(3^3\right)^4.\left(3^2\right)^3}{\left(3^4\right)^2}=\frac{3^{12}.3^6}{3^8}=3^{10}\)
\(\text{2, }\left(\frac{1}{5}\right)^{2002}.\left(-5\right)^{2000}=\frac{1}{5^{2002}}.5^{2000}=\frac{5^{2000}}{5^{2002}}=\frac{1}{5^2}=\frac{1}{5^2}\)
\(\text{3, }\frac{4^{11}.4^5}{2^{31}}=\frac{2^{22}.2^{10}}{2^{31}}=\frac{2^{32}}{2^{31}}=2\)
\(\text{4, }3^2.\frac{1}{243}.81^2.\frac{1}{3^2}=\frac{3^2.81^2}{3^5.3^2}=\frac{3^2.3^8}{3^7}=\frac{3^{10}}{3^7}=3^3=27\)
\(\text{5, }4^2.\frac{25^2}{2^3.5^2}+32.125=\frac{2^4.5^4}{2^3.5^2}+2^5.5^3=2.5^2+2^5.5^2=5^2.\left(2+2^5.5\right)=25.\left(2+32.5\right)=25.162=4050\)
C=\(\frac{\frac{8}{9}-\frac{8}{27}-\frac{8}{81}+\frac{8}{243}}{4-\frac{4}{3}+\frac{4}{9}+\frac{4}{27}}\)