CV

Những câu hỏi liên quan
NH
Xem chi tiết
NT
27 tháng 7 2021 lúc 23:45

c) Ta có: \(\dfrac{5x^4+9x^3-2x^2-4x-8}{x-1}\)

\(=\dfrac{5x^4-5x^3+14x^3-14x^2+12x^2-12x+8x-8}{x-1}\)

\(=\dfrac{5x^3\left(x-1\right)+14x^2\left(x-1\right)+12x\left(x-1\right)+8\left(x-1\right)}{x-1}\)

\(=5x^3+14x^2+12x+8\)

d) Ta có: \(\dfrac{5x^3+14x^2+12x+8}{x+2}\)

\(=\dfrac{5x^3+10x^2+4x^2+8x+4x+8}{x+2}\)

\(=\dfrac{5x^2\left(x+2\right)+4x\left(x+2\right)+4\left(x+2\right)}{x+2}\)

\(=5x^2+4x+4\)

Bình luận (0)
NH
Xem chi tiết
NT
27 tháng 7 2021 lúc 19:40

c) Ta có: \(\dfrac{5x^4+9x^3-2x^2-4x-8}{x-1}\)

\(=\dfrac{5x^4-5x^3+14x^3-14x^2+12x^2-12x+8x-8}{x-1}\)

\(=\dfrac{5x^3\left(x-1\right)+14x^2\left(x-1\right)+12x\left(x-1\right)+8\left(x-1\right)}{x-1}\)

\(=5x^3+14x^2+12x+8\)

Bình luận (0)
DH
Xem chi tiết
NT
31 tháng 10 2021 lúc 20:52

b: \(\dfrac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}\)

\(=x^2-2x+1\)

\(=\left(x-1\right)^2\)

c: \(=\dfrac{5x^4-5x^3+14x^3-14x^2+12x^2-12x+8x-8}{x-1}\)

\(=5x^3+14x^2+12x+8\)

Bình luận (0)
PB
Xem chi tiết
CT
21 tháng 3 2018 lúc 7:30

Bình luận (0)
NM
Xem chi tiết
NT
3 tháng 6 2023 lúc 13:25

1: Sửa đề: 3x-5

\(=\dfrac{-x^2\left(3x-5\right)-3\left(3x-5\right)}{3x-5}=-x^2-3\)

2: \(=\dfrac{5x^4-5x^3+14x^3-14x^2+12x^2-12x+8x-8}{x-1}\)

=5x^2+14x^2+12x+8

3: \(=\dfrac{5x^3+10x^2+4x^2+8x+4x+8}{x+2}=5x^2+4x+4\)

4: \(=\dfrac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}=x^2+1-2x\)

5: \(=\dfrac{x^2\left(5-3x\right)+3\left(5-3x\right)}{5-3x}=x^2+3\)

Bình luận (0)
H24
Xem chi tiết
NT
11 tháng 10 2021 lúc 20:57

\(x^4-9x^3+x^2-9x=0\)

\(\Leftrightarrow x\left(x^2+1\right)\left(x-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 6 2019 lúc 14:20

Lời giải của các bạn đều thỏa mãn yêu cầu đề bài là phân tích đa thức thành nhân tử

Bình luận (0)
PB
Xem chi tiết
CT
23 tháng 7 2017 lúc 7:26

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Bình luận (0)
KD
Xem chi tiết
NT
25 tháng 10 2023 lúc 20:49

a: \(a^2+6ab+9b^2-1\)

\(=\left(a+3b\right)^2-1^2\)

\(=\left(a+3b+1\right)\left(a+3b-1\right)\)

b: \(4x^2-25+\left(2x+7\right)\left(5-2x\right)\)

\(=\left(2x-5\right)\left(2x+5\right)-\left(2x+7\right)\left(2x-5\right)\)

\(=\left(2x-5\right)\left(2x+5-2x-7\right)\)

\(=-2\left(2x-5\right)\)

c: \(5\left(x+3y\right)-15x\left(x+3y\right)\)

\(=\left(x+3y\right)\left(-15x+5\right)\)

\(=-5\left(3x-1\right)\left(x+3y\right)\)

d: \(x\left(x+y\right)^2-y\left(x+y\right)^2+xy-x^2\)

\(=\left(x+y\right)^2\cdot\left(x-y\right)-x\left(x-y\right)\)

\(=\left(x-y\right)\left[\left(x+y\right)^2-x\right]\)

e: \(a^2-6a+9-b^2\)

\(=\left(a-3\right)^2-b^2\)

\(=\left(a-3-b\right)\left(a-3+b\right)\)

f: \(x^3-y^3-3x^2+3x-1\)

\(=\left(x^3-3x^2+3x-1\right)-y^3\)

\(=\left(x-1\right)^3-y^3\)

\(=\left(x-1-y\right)\left[\left(x-1\right)^2+y\left(x-1\right)+y^2\right]\)

Bình luận (0)
LN
Xem chi tiết