Những câu hỏi liên quan
NH
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
HP
Xem chi tiết
H24
13 tháng 4 2024 lúc 16:16

VMO 2007 bạn nhé

Bình luận (0)
CM
Xem chi tiết
CM
Xem chi tiết
QT
Xem chi tiết
AH
31 tháng 5 2023 lúc 10:56

Bài này có đúng là của lớp 7 không bạn?

Bình luận (0)
NG
Xem chi tiết
VA
12 tháng 11 2021 lúc 23:29

A nhé

Bình luận (1)
NT
12 tháng 11 2021 lúc 23:32

Chọn A

Bình luận (1)
HH
Xem chi tiết
TN
5 tháng 11 2016 lúc 20:27

Ta chứng minh \(x^4+y^4\ge x^3y+xy^3\)

\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left[\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}\right]\ge0\)(luôn đúng)

Áp dụng vào bài toán ta có:

\(x^4+y^4\ge x^3y+xy^3\)\(\Rightarrow2\left(x^4+y^4\right)\ge x^4+y^4+x^3y+xy^3\)\(=\left(x^3+y^3\right)\left(x+y\right)\)

\(\Rightarrow\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\).Tương tự ta cũng có:

\(\frac{y^4+z^4}{y^3+z^3}\ge\frac{y+z}{2};\frac{z^4+x^4}{z^3+x^3}\ge\frac{z+x}{2}\)

Cộng theo vế ta có: \(VT\ge\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=x+y+z=1\)

Dấu = khi \(x=y=z=\frac{2008}{3}\)

Bình luận (0)
NH
Xem chi tiết