Những câu hỏi liên quan
DP
Xem chi tiết
MN
Xem chi tiết
NM
24 tháng 12 2021 lúc 22:12

\(23-y^2=7\left(x-2004\right)^2\ge0\\ \Leftrightarrow y^2\le23\)

Mà \(y\in N\Leftrightarrow y\in\left\{0;1;2;3;4\right\}\)

Với \(y=0\Leftrightarrow7\left(x-2004\right)^2=23\left(loại\right)\)

Với \(y=1\Leftrightarrow7\left(x-2004\right)^2=22\Leftrightarrow\left(x-2004\right)^2=\dfrac{22}{7}\left(loại\right)\)

Với \(y=2\Leftrightarrow7\left(x-2004\right)^2=19\Leftrightarrow\left(x-2004\right)^2=\dfrac{19}{7}\left(loại\right)\)

Với \(y=3\Leftrightarrow7\left(x-2004\right)^2=14\Leftrightarrow\left(x-2004\right)^2=2\left(loại\right)\)

Với \(y=4\Leftrightarrow7\left(x-2004\right)^2=7\Leftrightarrow\left[{}\begin{matrix}x-2004=1\\x-2004=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2005\\x=2003\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(2005;4\right);\left(2003;4\right)\)

Bình luận (0)
PA
Xem chi tiết
HT
Xem chi tiết
LP
18 tháng 12 2023 lúc 5:21

Điều kiện đã cho \(\Leftrightarrow7\left(x-2019\right)^2+y^2=23\) (*)

Do \(\left(x-2019\right)^2,y^2\ge0\) nên (*) suy ra \(y^2\le23\Leftrightarrow y^2\in\left\{0,1,4,9,16\right\}\)

\(\Leftrightarrow y\in\left\{0,1,2,3,4\right\}\)

Hơn nữa, lại có \(y^2=23-7\left(x-2019\right)^2\). Ta thấy \(VP\) chia 7 dư 2.

\(\Rightarrow y^2\) chia 7 dư 2 \(\Rightarrow y\in\left\{3,4\right\}\)

Xét \(y=3\) \(\Rightarrow7\left(x-2019\right)^2=14\) \(\Leftrightarrow\left(x-2019\right)^2=2\), vô lí.

Xét \(y=4\Rightarrow7\left(x-2019\right)^2=7\) \(\Leftrightarrow\left(x-2019\right)^2=1\) \(\Leftrightarrow\left[{}\begin{matrix}x=2020\\x=2018\end{matrix}\right.\)

Vậy \(\left(x,y\right)\in\left\{\left(4;2020\right),\left(4;2018\right)\right\}\) thỏa mãn ycbt.

Bình luận (0)
MN
Xem chi tiết
DL
28 tháng 6 2016 lúc 8:54

\(\Leftrightarrow7\left(x-2004\right)^2=23-y^2\)(1)

Vì \(y^2\ge0\forall y\Rightarrow23-y^2\le23\forall y\)

\(\Rightarrow7\left(x-2004\right)^2\le23\)

\(\Rightarrow\left(x-2004\right)^2\le\frac{23}{7}< 4\)

Mà \(\left(x-2004\right)^2\ge0\forall x\Rightarrow0\le\left(x-2004\right)^2< 4\)

Trong đoạn [0;4) chỉ có 2 số chính phương là 0 và 1 nên:

Nếu x-2004=0 => y2 = 23 - không có y thuộc N thỏa mãn.Nếu (x-2004)2 = 1 thì x = 2005 hoặc x = 2003. Khi đó y2 = 16 mà y thuộc N nên y = 4.

Vậy có 2 nghiệm TM PT là (x=2003;y=4) và (x=2005;y=4).

Bình luận (0)
JA
28 tháng 6 2016 lúc 9:00

7(x-2004)^2 >= 0

-> 23 - y^2 >= 0. Suy ra y^2 <= 23

Ta có: 7(x-2004)^2= 23-y^2 -> 23-y^2 chia hết 7. Tức 23-y^2 là bội của 7. 

Các bội của 7 < 23 là: 0;7;14;21. => y^2={23;16;9;2}

Mà y là số tự nhiên nên y^2={16;9} nên y=4 hoặc 3

Chia 2 trường hợp

-Nếu y=4:

7(x-2004)^2=23-y^2

7(x-2004)^2=23-16

7(x-2004)^2=7 => (x-2004)^2=1 thì x-2004=1 hoặc -1. Suy ra x=2005 hoặc 2003

-Nếu y=3:

7(x-2004)^2=23-y^2

7(x-2004)^2=23-9

7(x-2004)^2=14 => (x-2004)^2=2. Không tồn tại trường hợp này vì ko có số tự nhiên nào có bình phương=2

vậy có 1 trường hợp: y=4 và x={2003;2005}

Chúc bạn học tốt

Bình luận (0)
DL
2 tháng 11 2017 lúc 5:40

Có 7(x-2004)^2 >0

Mà 7(x-2004)^2=23-y^2

Suy ra 23-y^2>0

Suy ra y^2<23

Y^2=0,1,4,9,16

Y=0,+-1,+-2,+-3,+-4

TH1)y^2=0,y=0

Suy ra 7(x-2004)^2=23-0    Suy ra (x-2004)^2=23/7(loại)

TH2)Y^2=1,y=+-1

Suy ra 7(x-2004)^2=23-1            Suy ra (x-2004)^2=22/7(loại)

TH3)y^2=4,y=+-2

Suy ra 7(x-2004)^2=23-4      Suy ra (x-2004)^2=21/7=3(loại)

TH4)Y^2=9,y=+-3     

Suy ra   7(x-2004)^2=23-9           Suy ra (x-2004)^2=14/2=2(Loại)

TH5)y^2=16,y=+-4

Suy ra 7(x-2004)^2=23-16           Suy ra (x-2004)^2=7/7=1

Suy ra x-2004=1                               Hoặc                x-2004=-1

x=2005                                                                    x=2003

Vậy y=+-4,x={2003,2005}        

Bình luận (0)
TN
Xem chi tiết
KL
3 tháng 6 2023 lúc 17:04

a) 15/5 < 18/5 < 20/5

3 < 18/5 < 4

Vậy x = 3; y = 4

b) 28/7 > 23/7 > 21/7

4 > 23/7 > 3

Vậy x = 4; y = 3

Bình luận (2)
L2
Xem chi tiết
TP
18 tháng 10 2018 lúc 9:33

22 . x + 2y = 2013

=> 4 . x + 4 = 2013

=> 4x = 2009

=> x = 502,25

Bình luận (0)
TP
18 tháng 10 2018 lúc 9:35

y = 2 nữa nhé mik bị thiếu

Bình luận (0)
HS
18 tháng 10 2018 lúc 9:37

\(2^2\cdot x+2^y=2013\)   => Thay thế y= 2

\(\Rightarrow4\cdot x+2^2=2013\)

\(\Rightarrow4\cdot x+4=2013\)

\(\Rightarrow4\cdot x=2013-4\)

\(\Rightarrow4\cdot x=2009\)

\(\Rightarrow x=\frac{2009}{4}=502,25\)

Vậy x = 502,25

Bình luận (0)
HP
Xem chi tiết
DH
2 tháng 6 2021 lúc 16:05

\(7\left(x-2017\right)^2+y^2=23\Rightarrow7\left(x-2017\right)^2\le23\Leftrightarrow\left(x-2017\right)^2\le\frac{23}{7}\)

mà \(x\inℕ\Rightarrow\orbr{\begin{cases}x-2017=0\\x-2017=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2017\\x=2018\end{cases}}\)

Với \(x=2017\)thì \(y^2=23\)không có nghiệm tự nhiên.

Với \(x=2018\)thì \(7+y^2=23\Leftrightarrow y^2=16\Leftrightarrow y=4\)(vì \(y\inℕ\))

Vậy ta có nghiệm \(\left(x,y\right)=\left(2018,4\right)\).

Bình luận (0)
 Khách vãng lai đã xóa
HN
Xem chi tiết