Những câu hỏi liên quan
NT
Xem chi tiết
NT
27 tháng 4 2021 lúc 14:23

a.Chứng tỏ rằng B = 1/22 + 1/32 + 1/42 + 1/52 + 1/6+ 1/72 +1/82 < 1

b.Cho S = 3/1.4 + 3/4.7 + 3/7.10 +......+3/40.43 + 3/43.46 hãy chứng tỏ rằng S < 1

Bình luận (2)

Sửa đề: 1/32=1/23

Giải:

A=1+1/2+1/22+1/23+..1/22012

2A=2+1+1/2+1/22+...+1/22011

2A-A=(2+1+1/2+1/22+...+1/22011)-(1+1/2+1/22+1/23+...+1/22012)

A=2-22012

Chúc bạn học tốt!

Bình luận (1)
NG
Xem chi tiết
LL
26 tháng 8 2021 lúc 22:14

\(S=1-2+2^2-2^3+...+2^{2012}-2^{2013}\)

\(\Rightarrow2S=2-2^2+2^3-2^4+...+2^{2013}-2^{2014}\)

\(\Rightarrow2S+S=2-2^2+2^3-...-2^{2014}+1-2^2-2^3+...-2^{2013}\)

\(\Rightarrow3S=1-2^{2014}\)\(\Rightarrow3S-2^{2014}=1-2^{2015}\)

Bình luận (0)
LM
Xem chi tiết
IK
12 tháng 5 2022 lúc 11:24

Đặt N = 1 + 2 + 22 +...+ 22012

2N = 2 + 22 + 23 +...+ 22013

2N - N = (2 + 22 + 23+....+ 22013) - (1 + 2 + 22 +....+ 22012)

N = 22013 - 1

Thay N vào M ta được:

\(M=\dfrac{2^{2013}-1}{2^{2014}-2}=\dfrac{2^{2013}-1}{2\left(2^{2013}-1\right)}=\dfrac{1}{2}\)
Bình luận (1)
BC
12 tháng 5 2022 lúc 11:31

Đặt \(N=1+2+2^2+...+2^{2012}\)

\(2N=2+2^2+2^3+...+2^{2013}\)

\(2N-N=\left(2+2^2+2^3+...+2^{2013}\right)-\left(1+2+2^2+...+2^{2012}\right)\)

\(N=2^{2013}-1\)

Thay N vào M ta được:

\(M=\dfrac{2^{2013-1}}{2^{2014}-2}=\dfrac{2^{2013}-1}{2\left(2^{2013}-1\right)}=\dfrac{1}{2}\)

Bình luận (0)
HN
12 tháng 5 2022 lúc 11:22

Tham khảo link: https://olm.vn/hoi-dap/detail/80564627052.html

Bình luận (1)
LM
Xem chi tiết
VL
Xem chi tiết
NM
21 tháng 11 2021 lúc 13:37

undefined

Bình luận (0)
HD
Xem chi tiết
NT
15 tháng 5 2021 lúc 0:49

\(\left(3-1\right)A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\\ 2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\\ 2A=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\\ 2A=\left(3^8-1\right)\left(3^8+1\right)...\left(3^{64}-1\right)\\ ...\\ 2A=\left(3^{64}-1\right)\left(3^{64}+1\right)\\ 2A=3^{128}-1\)

Vậy \(A=\dfrac{3^{128}-1}{2}.\)

Bình luận (0)
HL
Xem chi tiết
AM
10 tháng 6 2015 lúc 8:18

\(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\)

=>2A=\(2+1+\frac{1}{2}+...+\frac{1}{2^{2011}}\)

=>2A-A=\(\left(2+1+\frac{1}{2}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\right)=2-\frac{1}{2^{2012}}\)

=>A=\(\frac{2^{2013}-1}{2^{2012}}\)

Bình luận (0)
NN
Xem chi tiết
H24
18 tháng 5 2022 lúc 22:35

`A=1/[\sqrt{3}+1]+1/[\sqrt{3}-1]`

`A=[\sqrt{3}-1+\sqrt{3}+1]/[3-1]`

`A=[2\sqrt{3}]/2=\sqrt{3}`

Bình luận (0)
VG
18 tháng 5 2022 lúc 22:41

\(A=\dfrac{1}{\sqrt{3+1}}+\dfrac{1}{\sqrt{3-1}}\)

\(A=\dfrac{\sqrt{3-1+\sqrt{3+1}}}{\left(\sqrt{3+1}\right)\left(\sqrt{3-1}\right)}\)

\(A=\dfrac{2\sqrt{3}}{3-1}\)

\(A=\dfrac{2\sqrt{3}}{2}\)

\(A\sqrt{3}\)

Bình luận (0)
BC
18 tháng 5 2022 lúc 22:45

\(A=\dfrac{1}{\sqrt{3}+1}+\dfrac{1}{\sqrt{3}-1}\)

\(A=\dfrac{\sqrt{3}-1+\sqrt{3}+1}{3-1}\)

\(A=\dfrac{2\sqrt{3}}{2}\)

\(A=\sqrt{3}\)

Bình luận (2)
NL
Xem chi tiết
NT
7 tháng 11 2021 lúc 21:58

\(A=\dfrac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)

Bình luận (0)