Tìm tất cả các cặp số (x,y) thỏa mãn:
\(2013X^2+2014y^2-4026x+4028y+4027=0\)
tìm tất cả các cặp (x,y) thoả mãn 2013x^2+2014y^2-4026x+4028y+4027=0
\(\Leftrightarrow2013\left(x^2-2x+1\right)+2014\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow2013\left(x-1\right)^2+2014\left(y+1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\y+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
tìm tất cả các cặp số nguyên ( x;y ) thỏa mãn x2 + xy -2013x -2014y -2015 = 0
Tìm tất cả các cặp số (x,y)thỏa mãn 20132+2014y2-4026x+4028y+4027
Tìm cặp số (x,y) nguyên dương thỏa mãn x2 + xy - 2013x - 2014y -2015 = 0
Tìm cặp số (x,y) nguyên dương thỏa mãn x2 + xy - 2013x - 2014y -2015 = 0
Bài 1:Cho a,b,c là các số dương thay đổi thỏa mãn điều kiện :
\(5a^2+2abc+4b^2+3c^2=60\)
Tìm giá trị lớn nhất của biểu thức: \(A=a+b+c\)
Bài 2:
Tìm tất cả các cặp số nguyên (x,y) thỏa mãn:
\(x^2+xy-2013x-2014y-2015=0\)
Bài 2 :
\(x^2+xy-2013x-2014y-2015=0\)
\(\Leftrightarrow x^2+xy-2014x-2014y+x-2014-1=0\)
\(\Leftrightarrow\left(x^2+xy\right)-\left(2014x+2014y\right)+\left(x-2014\right)=1\)
\(\Leftrightarrow x\left(x+y\right)-2014\left(x+y\right)+\left(x-2014\right)=1\)
\(\Leftrightarrow\left(x-2014\right)\left(x+y\right)+\left(x-2014\right)=1\)
\(\Leftrightarrow\left(x-2014\right)\left(x+y+1\right)=1\)
Vì x, y là số nguyên dương \(\Rightarrow\hept{\begin{cases}x-2014\inℤ\\x+y+1\inℤ\end{cases}}\)
\(\Rightarrow\)\(x-2014\)và \(x+y+1\)là ước của 1
Lập bảng giá trị ta có:
\(x-2014\) | \(-1\) | \(1\) |
\(x+y+1\) | \(-1\) | \(1\) |
\(x\) | \(2013\) | \(2015\) |
\(y\) | \(-2015\) | \(-2015\) |
Vậy các cặp giá trị \(\left(x;y\right)\)thỏa mãn đề bài là \(\left(2013;-2015\right)\)hoặc \(\left(2015;-2015\right)\)
Cho hai số nguyên x,y thỏa mãn: x2+x2y2+2y=0 và x3+2y2-4y+3=0. Tính: F=2013x2+2014y2
Tìm tất cả các cặp số nguyên (x;y) thỏa mãn: x2- x(5+y) + 2 + y = 0
Tìm tất cả các cặp số nguyên dương (x; y) thỏa mãn điều kiện 2x2 - 2xy + x + y + 2 = 0
\(\Leftrightarrow2x^2+x+2=y\left(2x-1\right)\)
\(\Leftrightarrow y=\dfrac{2x^2+x+2}{2x-1}=x+1+\dfrac{3}{2x-1}\)
\(y\in Z\Rightarrow\dfrac{3}{2x-1}\in Z\)
Mà x nguyên dương \(\Rightarrow2x-1>0\)
\(\Rightarrow2x-1=Ư\left(3\right)\Rightarrow x=\left\{1;2\right\}\)
\(\Rightarrow\left(x;y\right)=\left(1;5\right);\left(2;4\right)\)