Bài 1 : Với a;b;c là những số thực thỏa mãn: ab+bc+ac=abc+a+b+c
với điều kiện \(3+ab\ne2;3+bc\ne2b+c;3+ac\ne2c+a\)
CMR : \(\frac{1}{3+ab-\left(2a+b\right)}+\frac{1}{3+bc-\left(2b+c\right)}+\frac{1}{3+ac-\left(2c+a\right)}=1\)
Bài 2 : cho a,b,c>=0, chứng minh (1+a)(1+b)(1+c)>= \(\left(1+\sqrt[3]{abc}\right)^3\)