Những câu hỏi liên quan
AM
Xem chi tiết
NT
9 tháng 5 2023 lúc 19:25

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

 

Bình luận (0)
MP
9 tháng 5 2023 lúc 19:39

a. Xét ΔHBA và ΔABC có:

       \(\widehat{H}=\widehat{A}\) = 900 (gt)

        \(\widehat{B}\) chung

\(\Rightarrow\)  ΔHBA \(\sim\) ΔABC (g.g)

b. Vì  ΔABC vuông tại A

Theo đ/lí Py - ta - go ta có:

  BC2 = AB2 + AC2

  BC2 = 32 + 42

\(\Rightarrow\) BC2 = 25 cm

\(\Rightarrow\) BC = \(\sqrt{25}=5\) cm

Ta lại có:  ΔHBA \(\sim\) ΔABC

   \(\dfrac{AH}{CA}=\dfrac{BA}{BC}\) 

\(\Leftrightarrow\dfrac{AH}{4}=\dfrac{3}{5}\) 

\(\Rightarrow\) AH = 2,4 cm

Bình luận (0)
LC
Xem chi tiết
NT
25 tháng 1 2022 lúc 18:52

Xét ΔABC có BM là đường phân giác

nên AM/AB=CM/CB

=>AM/3=CM/5

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AM}{3}=\dfrac{CM}{5}=\dfrac{AM+CM}{3+5}=\dfrac{4}{8}=\dfrac{1}{2}\)

Do đó: AM=1,5(cm)

Xét ΔABM vuông tại A và ΔDEF vuông tại D có 

AB/DE=AM/DF

Do đó: ΔABM\(\sim\)ΔDEF

Bình luận (0)
CI
Xem chi tiết
NT
20 tháng 2 2022 lúc 18:17

a, Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=5cm\)

Theo định lí Pytago tam giác MNP vuông tại N

\(NP=\sqrt{MP^2-MN^2}=6cm\)

b, Xét tam giác ABC và tam giác NPM có 

^BAC = ^PNM = 900

\(\dfrac{AB}{NP}=\dfrac{AC}{NM}=\dfrac{3}{6}=\dfrac{4}{8}=\dfrac{1}{2}\)

Vậy tam giác ABC ~ tam giác NPM ( c.g.c ) 

Bình luận (0)
CI
Xem chi tiết
NT
20 tháng 2 2022 lúc 20:08

a: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)

\(NP=\sqrt{10^2-8^2}=6\left(cm\right)\)

b: Xét ΔABC vuông tại A và ΔNPM vuông tại N có 

AB/NP=AC/NM

Do đó: ΔABC\(\sim\)ΔNPM

Bình luận (0)
CI
Xem chi tiết
NT
20 tháng 2 2022 lúc 20:11

undefined

Bình luận (0)
TT
Xem chi tiết
VD
Xem chi tiết
H24
18 tháng 2 2018 lúc 9:55

a) Làm theo bạn Doan Thanh phuong  nhé!

b) Ta có:  A = 90o => Tam giác ABC vuông tại a.

Áp dụng định lý Pitago. Ta có:

\(AB^2+AC^2=BC^2\Leftrightarrow3^2+4^2=9+16=25\)

\(\Rightarrow BC^2=25\). Mà \(25=5^2\Rightarrow BC=5\) cm

Bình luận (0)
TA
18 tháng 2 2018 lúc 9:45

a) Xét tam giác ABC và tam giác A'B'C' có :

      \(\widehat{A}=\widehat{A'}\left(gt\right)\)

      AB = A'B' ( gt )

       AC = A'C' ( gt )

Suy ra tam giác ABC = tam giác A'B'C' ( c - g - c )

b) Ta có tam giác ABC vuông tại A ( gt )

=> AB2 + AC= BC2 ( định lý Py-ta-go )

hay 32  +  42   = BC2

      BC2          = 32 + 42 = 9 + 16 = 25

=> BC = 5

Bình luận (0)
DP
18 tháng 2 2018 lúc 9:46

a) Xét tam giác ABC và tam giác A'B'C' có :

      ^A=^A'(gt)

      AB = A'B' ( gt )

       AC = A'C' ( gt )

Suy ra tam giác ABC = tam giác A'B'C' ( c - g - c )

b) Ta có tam giác ABC vuông tại A ( gt )

=> AB2 + AC= BC2 ( định lý Py-ta-go )

hay 32  +  42   = BC2

      BC2          = 32 + 42 = 9 + 16 = 25

=> BC = 5

Bình luận (0)
H24
Xem chi tiết
LL
2 tháng 11 2021 lúc 12:09

Xét tam giác ABC vuông tại A:

\(BC^2=AB^2+AC^2\left(Pytago\right)\)

\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{1}{2}.3.4=6\left(cm^2\right)\)

Bình luận (0)
PP
Xem chi tiết
LQ
Xem chi tiết
NT
30 tháng 1 2023 lúc 9:50

\(AC=\sqrt{5^2-3^2}=4\left(cm\right)\)

AB<AC<BC

=>góc C<góc B<góc A

Bình luận (0)
NT
30 tháng 1 2023 lúc 9:52

AC=căn 5^2-3^2=4cm

AB<AC<BC

=>góc C<góc B<góc A

Bình luận (0)