Những câu hỏi liên quan
HN
Xem chi tiết
NM
7 tháng 12 2021 lúc 7:47

Áp dụng BĐT cosi:

\(\left(2+a+b\right)\left(a+4b+ab\right)\ge3\sqrt[3]{2ab}\cdot3\sqrt[3]{4a^2b^2}=9\sqrt[3]{8a^3b^3}=9\cdot2ab=18ab\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}a=b=2\\a=4b=ab\end{matrix}\right.\left(\text{vô lí}\right)\)

Vậy dấu \("="\) ko xảy ra hay \(\left(2+a+b\right)\left(a+4b+ab\right)>18ab\)

Bình luận (0)
DT
Xem chi tiết
NB
17 tháng 5 2016 lúc 11:30

Xét hàm số \(f\left(x\right)=e^x-1-x\)  với \(x\ge0\)

Ta có : \(f'\left(x\right)=e^x-1\ge0\) với mọi  \(x\ge0\) 

và      : \(f'\left(x\right)=0\Leftrightarrow x=0\)

\(\Rightarrow f\left(x\right)\) đồng biến với  \(x\ge0\) nên với  \(x\ge0\Leftrightarrow f\left(x\right)\ge f\left(0\right)=0\)

hay \(e^x-1-x\ge0\) với mọi  \(x\ge0\)   
Bình luận (0)
NL
Xem chi tiết
HV
10 tháng 3 2020 lúc 14:52

Ta có: ( √a - √b)² ≥ 0 ( voi moi a , b ≥ 0 ) 
<=> a - 2√ab + b ≥ 0 
<=> a + b ≥ 2√ab 
<=> (a + b)/2 ≥ √ab 
dau "=" xay ra khi √a - √b = 0 <=> a = b

Bình luận (0)
 Khách vãng lai đã xóa
TT
10 tháng 3 2020 lúc 14:53

BĐT tương đương :

\(a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( luôn đúng )

Vậy ta có đpcm

Dấu "=" xảy ra \(\Leftrightarrow a=b\)

Bình luận (0)
 Khách vãng lai đã xóa
VH
22 tháng 8 2020 lúc 10:18

Ta có :

\(\frac{a+b}{2}\ge\sqrt{ab}\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)( với mọi a , b )

Vậy ..............

Bình luận (0)
 Khách vãng lai đã xóa
LP
Xem chi tiết
NN
14 tháng 5 2016 lúc 11:22

Ta có : 

          \(\log_ab\ge\log_{a+c}\left(b+c\right)\Leftrightarrow\log_ab-1\ge\log_{a+c}\left(b+c\right)-1\)

                                          \(\Leftrightarrow\log_a\frac{b}{a}\ge\log_{a+c}\frac{b+c}{a+c}\)  

Với \(1< a\le b\) và \(c\ge0\Rightarrow\frac{b}{a}\ge\frac{b+c}{a+c}\ge1\) nên \(\log_a\frac{b}{a}\ge\log_a\frac{b+c}{a+c}\) (*)

Mặt khác, ta được : \(\log_a\frac{b+c}{a+c}\ge\log_{a+c}\frac{b+c}{a+c}\)  (**)

Từ (*) và (**) \(\Rightarrow\log_ab\ge\log_{a+c}\left(b+c\right)\)

Dấu "=" xảy ra khi c = 0 hoặc a = b

Bình luận (0)
LQ
Xem chi tiết
LD
9 tháng 12 2018 lúc 7:11

\(a^2+ab+b^2=\left(a^2+2\cdot a\cdot\dfrac{1}{2}b+\dfrac{b^2}{4}\right)+\dfrac{3b^2}{4}\)

\(=\left(a+\dfrac{1}{2}b\right)^2+\dfrac{3b^2}{4}\ge0\)

Dấu "=" xảy ra khi và chỉ khi a = b = 0

Bình luận (0)
TT
Xem chi tiết
PN
21 tháng 9 2018 lúc 23:14

Với b\(\ge\)0, a\(\ge\)\(\sqrt{b}\) ta bình phương 2 vế lên có:

\(\sqrt{a\pm \sqrt{b}}^2\)=\((\sqrt{\dfrac{\sqrt{a+\sqrt{a^2-b}}}{2}}\)\pm \(\sqrt{\dfrac{\sqrt{a-\sqrt{a^2-b}}}{2}})^2\)

Bình luận (1)
PN
21 tháng 9 2018 lúc 23:25

Xét vế trái ta có:

\(\sqrt{(a\pm \sqrt{b})^2}\)=\(a\pm \sqrt{b})

Bình luận (0)
Y
15 tháng 6 2019 lúc 17:41

Bình phương vế phải của đẳng thức ta đc :

\(\frac{a+\sqrt{a^2-b}}{2}+\frac{a-\sqrt{a^2-b}}{2}\pm2\sqrt{\frac{a+\sqrt{a^2-b}}{2}\cdot\frac{a-\sqrt{a^2-b}}{2}}\)

\(=a\pm2\sqrt{\frac{a^2-\left(a^2-b\right)}{4}}\)

\(=a\pm2\sqrt{\frac{b}{4}}=a\pm\sqrt{b}\)

=> đpcm

Bình luận (0)
NN
Xem chi tiết
NN
17 tháng 5 2016 lúc 11:23

Xét hàm số : \(f_n\left(x\right)=e^x-1-x-\frac{x^2}{2}-.......-\frac{x^n}{n!}\)

Ta sẽ chứng minh \(f_n\left(x\right)\ge0\)  (*) với mọi \(x\ge;n\in N\)

* Với \(n=1:f_1\left(x\right)=e^x-1-x\Rightarrow f_1'\left(x\right)=e^x-1\ge0\) và \(f'\left(x\right)=0\) khi x = 0

\(\Rightarrow\) Hàm số \(f_1\left(x\right)\) đồng biến với \(x\ge0\Rightarrow f_1\left(x\right)\ge f_1\left(0\right)=0\)

Vậy (*) đúng với n = 1

* Giả sử (*) đúng với n = k hay \(f_k\left(x\right)\ge0\), ta cần chứng minh (*) đúng với \(n=k+1\) hay \(f_{k+1}9x=e^x-1-x-\frac{x^2}{2}-...-\frac{x^k}{k!}-\frac{x^{k+1}}{\left(k+1\right)!}\ge0\)

Thật vậy :

\(f_{k+1}'\left(x\right)=e^x-1-x-\frac{x^k}{k!}=f_k\left(x\right)\ge0\) (theo giả thiết quy nạp và \(f'_{k+1}\left(0\right)\ge f_{k+1}\left(0\right)=0\)khi \(x=0\)

\(\Rightarrow\) hàm số \(f_{k+1}\left(x\right)\) đồng biến với mọi \(x\ge0\Rightarrow f_{k+1}\left(x\right)\ge f_{k+1}\left(0\right)=0\) Vậy (*) đúng với n = k+1

Theo phương pháp quy nạp \(\Rightarrow e^x\ge1+x+\frac{x^2}{2}+..+\frac{x^n}{n!}\) với mọi \(x\ge0;n\in N\)

Bình luận (0)
NP
Xem chi tiết
AH
23 tháng 3 2017 lúc 2:35

Lời giải:

BĐT tương đương với \((a^2+ab+ac)(a^2+ac+ab+bc)+b^2c^2\geq 0\)

Đặt \(a^2+ab+ac=t\)

BĐT cần chứng minh \(\Leftrightarrow t(t+bc)+b^2c^2=(t-\frac{bc}{2})^2+\frac{3b^2c^2}{4}\geq 0\)

Luôn đúng vì bình phương của một số thực luôn là số không âm

Dấu bằng xảy ra khi \(2(a^2+ab+ac)=bc\)\(bc=0\)

Bình luận (0)
NN
Xem chi tiết
NT
14 tháng 5 2016 lúc 11:34

Vì \(a,b>1\) và \(c\ge0\Rightarrow0< \log_ba\le\log_b\left(a+c\right)\)

                              \(\Rightarrow\frac{1}{\log_ba}\ge\frac{1}{\log_b\left(a+c\right)}\Leftrightarrow\log_ab\ge\log_{a+c}b\)

                              \(\Rightarrow\) điều phải chứng minh

Bình luận (0)