Cho tam giác ABC nhọn nội tiếp đường tròn (O;R). Gọi Q là trung điểm của BC và các đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh : AH = 2OQ
b) Chứng minh rằng nếu : AB + AC = 2BC thì sinB + sin C = 2sin A
c) Cho BC = \(R\sqrt{2}\), chứng minh : AE * FH + AF * HE = \(R^2\sqrt{2}\)