Những câu hỏi liên quan
ND
Xem chi tiết
DH
Xem chi tiết
DH
9 tháng 5 2021 lúc 18:28

giúp mình câu b với các bạn ơi

 

Bình luận (0)
DT
Xem chi tiết
LH
7 tháng 6 2021 lúc 12:52

a) Có \(\widehat{BFC}=\widehat{CKB}=90^0\)

=> Tứ giác BCFK nội tiếp

b)Có \(\widehat{BCK}=\widehat{BFK}\)( vì tứ giác BCFK nội tiếp )

mà \(\widehat{BCE}=\widehat{BDE}=\dfrac{1}{2}sđ\stackrel\frown{EB}\)

=> \(\widehat{BFK}=\widehat{BDE}\) mà hai góc nằm ở vị trí hai góc đồng vị

=> KF//DE

Bình luận (0)
HB
Xem chi tiết
TA
15 tháng 3 2022 lúc 21:42

lx

Bình luận (1)
HH
15 tháng 3 2022 lúc 21:42

lỗi 

Bình luận (2)
AQ
Xem chi tiết
NM
13 tháng 12 2021 lúc 21:31

\(a,\widehat{ACM}=90^0\) (góc nt chắn nửa đg tròn)

\(b,\widehat{BAH}+\widehat{ABH}=90^0;\widehat{OAC}+\widehat{AMC}=90^0\left(\widehat{ACM}=90^0\right)\)

Mà \(\widehat{ABH}=\widehat{AMC}\left(=\dfrac{1}{2}sđ\stackrel\frown{AC}\right)\)

Do đó \(\widehat{BAH}=\widehat{OAC}\)

Bình luận (0)
TH
Xem chi tiết
I
1 tháng 4 2022 lúc 21:46

undefined

a)

xét tứ giác AEHF có :

AEH = 900 (BE là đường cao của B trên AC )

AFH = 900 (CF là dường cao của C trên AB )

ta có ; AEH + AFH = 1800 mà 2 góc này ở vị trí đối nhau 

==> tứ giác AEHF nội tiếp 

xét tứ AEDB có :

AEB = 900 (BE là dường cao của B trên AC )

ADB = 900 (AD là đường cao của A trên BD )

mà 2 góc này cùa nhìn cạnh AB dưới một góc vuông 

==> tứ giác AEDB nội tiếp

câu b vì mình ko hiểu đường cao của đường tròn là gì :/

 

Bình luận (0)
TC
Xem chi tiết
H24
Xem chi tiết
YY
30 tháng 5 2018 lúc 20:04

A B C D E O F

\(\widehat{\text{AFB}}=\widehat{ADB}=90^0\)

Mà ÀB và ADB là hai góc kề cùng nhìn AB dưới hai góc bằng nhau => ÀDB nội tiếp

b) ta có \(\widehat{ACB}=\widehat{AEB}\)( cùng chắn cung AB)

\(\widehat{DFC}=\widehat{BAF}\)( trong tứ giác nội tiếp góc ngaoif tại một đỉnh bằng góc trong đỉnh còn lại )

\(\Rightarrow\widehat{ACB}+\widehat{FDC}=\widehat{BAF}+\widehat{BAE}=90^0\)

\(\Rightarrow DF\perp CA\)

Bình luận (0)
TT
15 tháng 4 2020 lúc 13:42

dĐAEDƯÈWEWÈWÉWÈWẺ3GWDFCEWFSCAWECFASEFSAD

Bình luận (0)
 Khách vãng lai đã xóa
H24
15 tháng 4 2020 lúc 13:42

Lời giải:

a)

HM⊥AB;HN⊥AC⇒HMAˆ=HNAˆ=900HM⊥AB;HN⊥AC⇒HMA^=HNA^=900

Xét tứ giác AMHNAMHN có tổng 2 góc đối HMAˆ+HNAˆ=900+900=1800HMA^+HNA^=900+900=1800 nên AMHNAMHN là tứ giác nội tiếp (đpcm)

b)

Vì AMHNAMHN nội tiếp ⇒AMNˆ=AHNˆ⇒AMN^=AHN^

Mà AHNˆ=ACBˆ(=900−NHCˆ)AHN^=ACB^(=900−NHC^)

⇒AMNˆ=ACBˆ⇒AMN^=ACB^

Xét tam giác AMNAMN và ACBACB có:

{Aˆ−chungAMNˆ=ACBˆ(cmt)⇒△AMN∼△ACB(g.g){A^−chungAMN^=ACB^(cmt)⇒△AMN∼△ACB(g.g)

⇒AMAC=ANAB⇒AM.AB=AC.AN⇒AMAC=ANAB⇒AM.AB=AC.AN (đpcm)

c)

Ta có: ACBˆ=AEBˆACB^=AEB^ (góc nội tiếp chắn cung ABAB)

ACBˆ=AMNˆACB^=AMN^ (cmt)

⇒AEBˆ=AMNˆ⇒AEB^=AMN^

⇔IEBˆ=1800−BMIˆ⇔IEB^=1800−BMI^

⇔IEBˆ+BMIˆ=1800⇔IEB^+BMI^=1800, do đó tứ giác BMIEBMIE nội tiếp

⇒MIEˆ=1800−MBEˆ=1800−900=900⇒MIE^=1800−MBE^=1800−900=900 (MBEˆ=ABEˆ=900MBE^=ABE^=900 vì là góc nt chắn nửa đường tròn)

⇒MN⊥AE⇒MN⊥AE . Ta có đpcm.

Chúc bạn học tốt

Bình luận (0)
 Khách vãng lai đã xóa
CH
Xem chi tiết
QD
10 tháng 3 2022 lúc 21:11

Ta có :

Do BD và CE là các đường cao nên

suy ra góc BEC = góc BDC =90 độ

Xét tứ giác BCDE,có:

góc BEC=góc BDC

vậy BCDE là tứ giác nội tiếp(đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
DL
11 tháng 3 2022 lúc 16:17
Bình luận (0)
 Khách vãng lai đã xóa
PT
11 tháng 3 2022 lúc 17:31

xet tu giac BCDE co:

goc BEC = BDC = 90 (vi BD va CE la cac duong cao)

⇒ tu giac bcde noi tiep (theo dau hieu nhan biet tu giac noi tiep) (dieu phai chung minh)

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
NT
31 tháng 7 2023 lúc 22:33

a: góc BHD+góc BMD=180 độ

=>BHDM nội tiếp

b: BHDM nội tiếp

=>góc HDM+góc HBM=180 độ

=>góc ADM=góc ABC

=>góc ADM=góc ADC

=>DA là phân giáccủa góc MDC

c: Xét tứ giác DHNC có

góc DHC=góc DNC=90 độ

=>DHNC nội tiếp

=>góc NHD=góc NDC

góc NHD+góc MHD

=180 độ-góc NCD+góc MBD

=180  độ+180 độ-góc ABD-góc ACD

=180 độ

=>M,H,N thẳng hàng

Bình luận (0)