Những câu hỏi liên quan
LL
Xem chi tiết
NT
25 tháng 11 2023 lúc 21:13

a: Sửa đề: A,B,M,O

Xét tứ giác BMOA có

\(\widehat{BMO}+\widehat{BAO}=90^0+90^0=180^0\)

=>BMOA là tứ giác nội tiếp

=>B,M,O,A cùng thuộc một đường tròn

b: Xét (O) có

BA,BM là tiếp tuyến

Do đó: BA=BM và OB là phân giác của \(\widehat{AOM}\)

=>\(\widehat{AOM}=2\cdot\widehat{AOB}\)

Xét (O) có

CA,CN là tiếp tuyến

Do đó: CA=CN và OC là phân giác của \(\widehat{AON}\)

=>\(\widehat{AON}=2\cdot\widehat{AOC}\)

\(\widehat{AON}+\widehat{AOM}=180^0\)(hai góc kề bù)

=>\(2\cdot\widehat{AOC}+2\cdot\widehat{AOB}=180^0\)

=>\(2\cdot\widehat{BOC}=180^0\)

=>\(\widehat{BOC}=90^0\)

Xét ΔOBC vuông tại O có OA là đường cao

nên \(OA^2=AB\cdot AC\)

mà AB=BM và AC=CN

nên \(OA^2=BM\cdot CN\)

c: BA=BM

=>B nằm trên đường trung trực của AM(1)

OA=OM

=>O nằm trên đường trung trực của AM(2)

Từ (1) và (2) suy ra BO là đường trung trực của AM

=>BO\(\perp\)AM tại trung điểm của AM

=>BO\(\perp\)AM tại H và H là trung điểm của AM

CA=CN

=>C nằm trên đường trung trực của AN(3)

OA=ON

=>O nằm trên đường trung trực của AN(4)

Từ (3) và (4) suy ra CO là đường trung trực của AN

=>CO\(\perp\)AN tại trung điểm của AN

=>CO\(\perp\)AN tại K và K là trung điểm của AN

Xét tứ giác AHOK có \(\widehat{AHO}=\widehat{AKO}=\widehat{HOK}=90^0\)

nên AHOK là hình chữ nhật

 

Bình luận (0)
DL
Xem chi tiết
TN
Xem chi tiết
DP
Xem chi tiết
NA
Xem chi tiết
HL
Xem chi tiết
NT
Xem chi tiết
AH
Xem chi tiết
LB
Xem chi tiết
VM
7 tháng 4 2017 lúc 16:56

Bạn vẽ hình ra đi dc ko?!

Bình luận (0)