Câu 2: Trên đường tròn (O;R), lấy các điểm A,B,C sao cho góc AOB= 90 độ, góc BAC = 30 độ. Tính số đo góc CBO
Câu 59: Trên hình bên, ta có đường tròn (O; R)
A. Điểm O cách mọi điểm trên đường tròn một khoảng R
B. Điểm O cách mọi điểm trên hình tròn một khoảng R
C. Điểm O nằm trên đường tròn
D. Chỉ có câu C đúng
Câu 60: Gọi S1 là diện tích hình tròn bán kính R1 = 1 cm
S2 là diện tích hình tròn bán kính R2 gấp 2 lần bán kính R1. Ta có:
A. S2 = 2S1 B. S2 = S1 C. S2 = 4S1 D. S2 = 3S1
Câu 9. [VDC] Cho hai đường tròn bằng nhau (O; R) và (O/; R) cắt nhau tại A và B sao cho tâm đường tròn này nằm trên đường tròn kia. Tính theo R diện tích tứ giác OAO/B
A.R bình phương căn 3 trên 2 B.R bình phương căn 3 trên 3 C.R bình phương căn 5 trên 2 D.R bình phương căn 5
Câu 10. [VDC] Cho tam giác đều ABC có cạnh bằng 7 cm.
Gọi R và r lần lượt là bán kính đường tròn ngoại tiếp và bán kính
đường tròn nội tiếp tam giác ABC (như hình vẽ). Tổng R + r bằng
A. "21 căn 3 trên 2" cm. B. "7 căn 3 trên 6"cm.
C. "7căn 3 trên 2"cm. D. "7căn 3 trên 3"cm.
Câu 9: B
Câu 10: A
Câu 11; C
Cho đường tròn (O; R) và đường thẳng d không đi qua O cắt đường tròn (O) tại hai điểm A và B. Từ một điểm M tùy ý trên đường thẳng d và ở ngoài đường tròn (O) vẽ hai tiếp tuyến MN và MP với đường tròn (O).
1. Chứng minh rằng MN2 = MP2 = MA.MB. (câu này mình làm rồi)
2. Dựng vị trí điểm M trên đường thẳng d sao cho tứ giác MNOP là hình vuông.
3. Chứng minh rằng tâm của đường tròn nội tiếp và tâm của đường tròn ngoại tiếp tam giác MNP lần lượt chạy trên hai đường cố định khi M di động trên đường thẳng d.
2. Để MONP là hình vuông thì đường chéo OM=ON\(\sqrt{2}\)=R\(\sqrt{2}\)
Dựng điểm M: Ta dựng hình vuông OACD, dựng đường tròn tâm O đi qua điểm D, cắt (d) tại M
CM: Từ M vã 2 tiếp tuyến MN và MP ta có: \(MN=\sqrt{MO^2-ON^2}=R\)
Nên tam giác ONM vuông cân tại N. Tương tự tam giác OMP vuông cân tại P do đó MNOP là hình vuông
Bài toán luôn có 2 nghiệm vì \(OM=R\sqrt{2}>R\)
3. Ta có MN và MP là 2 tiếp tuyến của (O) nên MNOP là tứ giác nội tiếp đường tròn đường kính OM. Tâm là trung điểm H của OM. Suy ra tam giác cân MPO nội tiếp trong đường tròn đường kính OM, tâm là H
Kẻ \(OE\perp AB\) thì E là trung điểm của AB (cố định ). kẻ \(HL\perp\left(d\right)\) thì HL//OE nên HL là đường trung bình của tam giác OEM => HL=1/2 OE (không đổi)
Do đó khi M di động trên (d) thì H luôn cách đều (d) một đoạn không đổi, nên H chạy trên đường thẳng (d')//(d) và (d') đi qua trung điểm của đoạn OE
Ta có OM là phân giác góc NMP (tính chất 2 tiếp tuyến cắt nhau). Kẻ tia phân giác góc PNM cắt đường tròn (O) tại điểm F khi đó NF=FP (ứng với góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung bằng nhau)
=> F ở trên OM dó đó F là tâm đường tròn nội tiếp tam giác MNP
Vậy khi M di động trên (d) thì tâm đường tròn nội tiếp tam giác MNP chạy trên đường tròn (O)
Hãy chọn câu trả lỏi sai: Cho hai đường tròn ( O;4cm ) và ( O';3cm) cắt nhau tại A và B.
A. Điểm A nằm trên đươfng tròn ( O';3cm ). B.Điểm B nằm trên đường tròn ( O';3cm).
C.Điểm B nằm trên đường tròn (O;4cm) D.Tất cả các câu trên đều sai
mình đã giải thích rồi thây bạn Dinh Thi Ngoc Huyen
D.tất cả đều sai
~~~~~~~~~~~~~~~~~~
k mình nha
Vì 2 đường tròn cắt nhau nên cả 2 điểm A và B đều thuộc 2 đường tròn
=> D đúng
(Làm hộ mình mỗi câu d thôi nha, các câu kia để lấy số liệu làm bài)
Cho nửa đường tròn(O;R), đường kính AB. Trên nửa mặt phẳng bờ AB chứa nửa đường tròn, kẻ tiếp tuyến Bx với (O). M là điểm bất kì trên Bx(M khác B), AM cắt nửa đường tròn (O) tại N (N khác A). Kẻ OE vuông góc với AN tại E.
a) Chứng minh các điểm E, O, B, Mcùng thuộc đường tròn
b) Tiếp tuyến của nửa đường tròn (O) tại N cắt tia OE tại K và cắt MB tại D. Chứng minh KA là tiếp tuyến của nửa đường tròn (O).
c) Chứng minh KA.DB không đổi khi M di động trên tia Bx
d) Gọi H là giao điểm của AB và DK, kẻ OF vuông góc với AB(F thuộc DK). Chứng minh: BD/DF+DF/HF=1
(Làm hộ mình mỗi câu d thôi nha, các câu kia để lấy số liệu làm bài)
Cho nửa đường tròn(O;R), đường kính AB. Trên nửa mặt phẳng bờ AB chứa nửa đường tròn, kẻ tiếp tuyến Bx với (O). M là điểm bất kì trên Bx(M khác B), AM cắt nửa đường tròn (O) tại N (N khác A). Kẻ OE vuông góc với AN tại E.
a) Chứng minh các điểm E, O, B, Mcùng thuộc đường tròn
b) Tiếp tuyến của nửa đường tròn (O) tại N cắt tia OE tại K và cắt MB tại D. Chứng minh KA là tiếp tuyến của nửa đường tròn (O).
c) Chứng minh KA.DB không đổi khi M di động trên tia Bx
d) Gọi H là giao điểm của AB và DK, kẻ OF vuông góc với AB(F thuộc DK). Chứng minh: BD/DF+DF/HF=1
d. OF//BD nên \(\widehat{FOD}=\widehat{ODB}\)
Mà \(\widehat{ODB}=\widehat{ODF}\Rightarrow\widehat{FOD}=\widehat{ODF}\)
Do đó FOD cân tại F
\(\Rightarrow OF=FD\)
Áp dụng Talet: \(\dfrac{BD}{FD}=\dfrac{BD}{OF}=\dfrac{DH}{HF}\)
\(\Rightarrow\dfrac{BD}{DF}+\dfrac{DF}{HF}=\dfrac{DH}{HF}+\dfrac{DF}{HF}=\dfrac{DH+DF}{HF}=\dfrac{HF}{HF}=1\left(đpcm\right)\)
Cho đường tròn tâm O đường kính AB. Trên cùng một nửa đường tròn (O) đường kính AB lấy hai điểm C, D sao cho cung AC nhỏ hơn cung AD. Gọi T là giao điểm của hai đường thẳng CD và AB. Vẽ đường tròn tâm I đường kính TO cắt đường tròn tâm O tại M và N (M nằm trên nửa đường tròn tâm O chứa điểm C). Gọi E là giao điểm của MN và AB. Chứng minh rằng:
1. TM là tiếp tuyến của (O).
2. TM2 = TC. TD
3. 4 điểm O, D, C, E cùng nằm trên một đường tròn.
(mình cần câu 3 thôi)
Câu 5. (3,5 điểm) Cho đường tròn tâm O bán kính R và đường thẳng (d) không đi qua O cắt đường tròn (O; R), qua M kẻ hai tiếp tuyến MN và MP tới đường tròn (O; R) (N, P là hai tiếp điểm)
a)Chứng minh rằng tứ giác MNOP nội tiếp được trong một đường tròn, xác định tâm đường tròn đó.
b) Chứng minh rằng MA.MB = MN2
c) Khi điểm M chuyển động trên (d) và nằm ngoài đường tròn (O; R) thì tâm đường tròn ngoại tiếp tam giác MNP di chuyển trên đường nào.
mọi người giúp em câu B bài hình với
cho đường tròn tâm O , bán kính R , đường thảng d ko qua O cắt đường tròn ở 2 điểm E, F . lấy điểm M bất kì trên tia đối EF , qua M kẻ 2 tiếp tuyến MC,MD với đường tròn .
A. cminh: Tứ giác MCOD nội tiếp
B. gọi K trung điểm EF. cminh KM là phân giác góc DKC
b) Trong (O) có EF là dây cung không đi qua O và K là trung điểm EF
\(\Rightarrow OK\bot EF\Rightarrow\angle OKM=90=\angle ODM\Rightarrow OKDM\) nội tiếp
mà theo câu a) MCOD nội tiếp nên M,D,K,O,C cùng thuộc 1 đường tròn
\(\Rightarrow MDKC\) nội tiếp
\(\Rightarrow\angle MKD=\angle MCD=\angle MDC\) (\(\Delta MCD\) cân tại M) \(=\angle MKC\)
\(\Rightarrow KM\) là phân giác \(\angle DKC\)
Câu hỏi
Cho đường tròn tâm O đường kính AB=2R và E là điểm bất kì trên đường tròn đó (E khác A và B). Đường phân giác góc AEB cắt đoạn thẳng AB tại F và cắt đường tròn (O) tại điểm thứ hai K khác A.
2.Gọi I là giao điểm của đường trung trực đoạn EF với OE. Chứng minh rằng đường tròn (I; IE) tiếp xúc với đường tròn (O) tại E và tiếp xúc với đường thẳng AB tại F.
Ở câu 2 em thấy lời giải là : Ta có I là giao điểm của đường trung trực d của đoạn thẳng EF với OE (gt) nên O,I,E thẳng hàng . Ai có thể giải thích rõ hơn cho em vs đc k ạ
2: I nằm trên trung trực của EF
=>IE=IF
=>góc IEF=góc IFE=góc OKE
=>IF//OK
=>IF vuông góc AB tại F
=>AB là tiêp tuyến của (I;IE)