Những câu hỏi liên quan
BD
Xem chi tiết
GC
10 tháng 5 2015 lúc 17:48

Ta có : \(\frac{x}{x+y+z+t}

Bình luận (0)
H24
6 tháng 11 2017 lúc 15:57

Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

mong các bn đừng làm như vậy nah

Bình luận (0)
VM
Xem chi tiết
VM
Xem chi tiết
VM
Xem chi tiết
JN
Xem chi tiết
PN
8 tháng 5 2016 lúc 16:03

a)Ta có ; để A thuộc N <=> (2n+5) chia hết cho (3n+1)

<=> 3(2n+5) chia hết cho (3n+1)

<=>(6n+15) chia hết cho (3n+1)

<=> (6n + 2 +13) chia hết cho (3n+1)

<=> 13 chia hết cho (3n+1)

=> (3n+1) thuộc Ư(13)

Vì n thuộc N

=> (3n+1) = 1,13

=> n = 0 hoặc 4

b)Trong phần này ta sẽ áp dung 1 tính chất sau:

a/b < (a+m)/(b+m)      với a<b

Ta thấy :

x/(x+y)  >  x/(x+y+z)

y/(y+z) > y/(x+y+z)

z/(z+x) > z/(x+y+z)

=> A > x/(x+Y+z) + y/(x+y+z) + z/(x+y+z)

=> A>1

Ta thấy :

x/x+y < (x+z)/(x+y+z)

y/y+z < (y+x)/(x+y+z)

z/z+x < (z+y)/(x+y+z)

=> A < (x+z)/(x+y+z) +(y+x)/(x+y+z) +(z+y)/(x+y+z)

=>A< 2(x+y+z)/(x+y+z)

=> A<2

=>1<A<2

=> A ko phải là số nguyên(đpcm)

Bình luận (0)
TM
Xem chi tiết
PM
16 tháng 2 2019 lúc 22:27

Đề bài câu 2 là gì thế bạn????

Bình luận (1)
TC
28 tháng 4 2019 lúc 18:42

bn ko nhìn ra à

Bình luận (2)
PH
Xem chi tiết
DL
Xem chi tiết
HP
Xem chi tiết
AH
28 tháng 2 2023 lúc 18:21

Lời giải:

Do $x,y,z>0$ nên:

$A> \frac{x}{x+y+z}+\frac{y}{y+z+x}+\frac{z}{z+x+y}=\frac{x+y+z}{x+y+z}=1(*)$

Mặt khác:
$\frac{x}{x+y}-\frac{x+z}{x+y+z}=\frac{-yz}{(x+y)(x+y+z)}<0$ với mọi $x,y,z>0$

$\Rightarrow \frac{x}{x+y}< \frac{x+z}{x+y+z}(1)$

Hoàn toàn tương tự ta có:

$\frac{y}{y+z}< \frac{y+x}{y+z+x}(2)$

$\frac{z}{z+x}< \frac{z+y}{z+x+y}(3)$

Lấy $(1)+(2)+(3)$ ta thu được: $A< \frac{2(x+y+z)}{x+y+z}=2(**)$

Từ $(*); (**)\Rightarrow 1< A< 2$ nên $A$ không là số nguyên.

Bình luận (0)
NL
Xem chi tiết