Những câu hỏi liên quan
TP
Xem chi tiết
NN
Xem chi tiết
LA
Xem chi tiết
TM
30 tháng 12 2016 lúc 22:06

A B C H D 35 o

a) Xét tam giác AHB và tam giác DBH có:

AH=BD (giả thiết)

Góc AHB=góc DBH (=90o)

BH là cạnh chung

=> Tam giác AHB = tam giác DBH (c.g.c)

b) Theo chứng minh phần a: Tam giác AHB = tam giác DBH => Góc ABH = góc BHD (2 góc tương ứng)

Mà góc ABH và góc BHD là 2 góc so le trong => AB//DH

c) Tam giác ABH có: \(\widehat{BAH}+\widehat{AHB}+\widehat{ABH}=180^o\) (tổng 3 góc trong tam giác)

=>\(35^o+90^o+\widehat{ABH}=180^o\Rightarrow\widehat{ABH}=180^o-35^o-90^o=55^o\)

Tam giác ABC có: \(\widehat{BAC}+\widehat{ACB}+\widehat{ABC}=180^o\)(tổng 3 góc trong tam giác)

=>\(90^o+\widehat{ACB}+55^o=180^o\Rightarrow\widehat{ACB}=180^o-90^o-55^o=35^o\)

Bình luận (1)
TH
28 tháng 12 2020 lúc 20:27

góc a phải bằng 45 độ chứ 

Bình luận (2)
 Khách vãng lai đã xóa
NC
Xem chi tiết
NY
Xem chi tiết
NT
16 tháng 3 2023 lúc 22:45

3: 

\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

HB=12^2/20=7,2cm

=>HC=20-7,2=12,8cm

\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)

\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)

Bình luận (0)
DN
Xem chi tiết
TB
Xem chi tiết
NN
Xem chi tiết
TQ
Xem chi tiết
NH
Xem chi tiết
NT
26 tháng 7 2021 lúc 21:23

a) Xét ΔABC có 

BE là đường cao ứng với cạnh AC

CF là đường cao ứng với cạnh AB

BE cắt CF tại H

Do đó: H là trực tâm của ΔABC

Suy ra: AH\(\perp\)BC

Xét tứ giác BHCD có 

BH//CD

HC//BD

Do đó: BHCD là hình bình hành

b) Ta có: BHCD là hình bình hành(cmt)

nên Hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của HD

Ta có: ΔFBC vuông tại F(gt)

mà FM là đường trung tuyến ứng với cạnh huyền BC(gt)

nên \(FM=\dfrac{BC}{2}\)(1)

Ta có: ΔEBC vuông tại E(gt)

mà EM là đường trung tuyến ứng với cạnh huyền BC(gt)

nên \(EM=\dfrac{BC}{2}\)(2)

Từ (1) và (2) suy ra MF=ME

hay ΔEMF cân tại M(đpcm)

Bình luận (0)