Cho hai biểu thức \(A=\frac{\sqrt{x}+1}{\sqrt{x}-3};B=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\)(ĐK: \(x\ge0;x\ne9\))
Tìm tất cả giá trị của x để \(\frac{B}{A}< \frac{-1}{2}\)
Cho hai biểu thức $A=\frac{4 \sqrt{x}}{\sqrt{x}-1} ; B=\frac{1}{\sqrt{x}+1}+\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-1}$ với $x \geq 0 ; x \neq 1$
1. Tính giá trị biểu thức $A$ khi $x=49$;
2. Chứng minh $B=\frac{\sqrt{x}+1}{\sqrt{x}-1}$;
3. Cho $P=A: B$. Tìm giá trị của $x$ để $P(\sqrt{x}+1)=x+4+\sqrt{x-4}$.
Em gửi ảnh trên ạ !!!!!
a, Ta có \(x=49\Rightarrow\sqrt{x}=7\)
Thay vào biểu thức A ta được :
\(A=\frac{7.4}{7-1}=\frac{28}{6}=\frac{14}{3}\)
b, Với \(x\ge0;x\ne1\)
\(B=\frac{1}{\sqrt{x}+1}+\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-1}=\frac{\sqrt{x}-1+x+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)( đpcm )
1. Cho hai biểu thứ A=\(\frac{\sqrt{x}+3}{\sqrt{x}-1}\) và A = (\(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\)).\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) với x >3, x ≠ 1.
a) Tính giá trị của biểu thức A khi x = 49
b) Rút gọn biểu thức V
c) Tìm x để \(\frac{B}{A}< \frac{3}{4}\)
2. Cho hai biểu thức A = \(\frac{\sqrt{x}}{1+3\sqrt{x}}\)và B=\(\frac{x+3}{x-9}+\frac{2}{\sqrt{x}+3}-\frac{1}{3-\sqrt{x}}\), với x>0, x ≠9
a) Tính giá trị biểu thức A khi x = \(\frac{4}{9}\)
b) Rút gọn biểu thức B
c) Cho P=B:A. Tìm x để P<3
Bài 1: Sửa đề: \(B=\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
a) Thay x=49 vào biểu thức \(A=\frac{\sqrt{x}+3}{\sqrt{x}-1}\), ta được:
\(A=\frac{\sqrt{49}+3}{\sqrt{49}-1}=\frac{7+3}{7-1}=\frac{10}{6}=\frac{5}{3}\)
Vậy: Khi x=49 thì \(A=\frac{5}{3}\)
b) Sửa đề: Rút gọn biểu thức B
Ta có: \(B=\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\left(\frac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\frac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\frac{x+2\sqrt{x}-\sqrt{x}-2}{\sqrt{x}\cdot\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)-\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}}\)
c) Ta có: \(\frac{B}{A}=\frac{\sqrt{x}+1}{\sqrt{x}}:\frac{\sqrt{x}+3}{\sqrt{x}-1}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}}\cdot\frac{\sqrt{x}-1}{\sqrt{x}+3}\)
\(=\frac{x-1}{\sqrt{x}\left(\sqrt{x}+3\right)}\)
Để \(\frac{B}{A}< \frac{3}{4}\) thì \(\frac{x-1}{\sqrt{x}\left(\sqrt{x}+3\right)}-\frac{3}{4}< 0\)
\(\Leftrightarrow\frac{4\left(x-1\right)-3\sqrt{x}\left(\sqrt{x}+3\right)}{4\sqrt{x}\left(\sqrt{x}+3\right)}< 0\)
mà \(4\sqrt{x}\left(\sqrt{x}+3\right)>0\forall x\) thỏa mãn ĐKXĐ
nên \(4\left(x-1\right)-3\sqrt{x}\left(\sqrt{x}+3\right)< 0\)
\(\Leftrightarrow4x-4-3x-9\sqrt{x}< 0\)
\(\Leftrightarrow x-9\sqrt{x}-4< 0\)
\(\Leftrightarrow x^2-9x-4< 0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\frac{9}{2}+\frac{81}{4}-\frac{97}{4}< 0\)
\(\Leftrightarrow\left(x-\frac{9}{2}\right)^2< \frac{97}{4}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-\frac{9}{2}>-\frac{\sqrt{97}}{2}\\x-\frac{9}{2}< \frac{\sqrt{97}}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>\frac{9-\sqrt{97}}{2}\\x< \frac{9+\sqrt{97}}{2}\end{matrix}\right.\)
Kết hợp ĐKXĐ, ta được:
\(3< x< \frac{9+\sqrt{97}}{2}\)
cho hai biểu thức
A = \(\sqrt{63}-\sqrt{28}-\sqrt{\left(\sqrt{7}-1\right)^2}\)
B = \(\left(\frac{1}{\sqrt{x}+3}+\frac{1}{\sqrt{x}-3}\right).\frac{4.\left(\sqrt{x}+3\right)}{\sqrt{x}}\)
rút gọn biểu thức A và B
tìm giá trị của x để giá trị biểu thức B bằng giá trị biểu thức A
Cho hai biểu thức: \(A=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{3-11\sqrt{x}}{9-x}\); \(B=\frac{\sqrt{x}-3}{\sqrt{x}+1}\) với \(x\ge0;x\ne9\)
a) Tính giá trị của biểu thức B tại x=25
b) Rút gọn biểu thức A
c) Tìm giá trị nhỏ nhất của biểu thức: P=A.B+1
a, - Thay x = 25 vào biểu thức B ta được :
\(B=\frac{\sqrt{25}-3}{\sqrt{25}+1}=\frac{1}{3}\)
b, Ta có : \(A=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{3-11\sqrt{x}}{9-x}\)
=> \(A=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{11\sqrt{x}-3}{x-9}\)
=> \(A=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{11\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
=> \(A=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)+11\sqrt{x}-3}{x-9}\)
=> \(A=\frac{2x-6\sqrt{x}+x+\sqrt{x}+3\sqrt{x}+3+11\sqrt{x}-3}{x-9}\)
=> \(A=\frac{3x+9\sqrt{x}}{x-9}=\frac{3\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{3\sqrt{x}}{\sqrt{x}-3}\)
c, Ta có : \(P=AB+1=\frac{3\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}+1\)
=> \(P=\frac{3\sqrt{x}}{\sqrt{x}+1}+1\)
=> \(P=\frac{3\sqrt{x}+3-3}{\sqrt{x}+1}+1\)
=> \(P=4-\frac{3}{\sqrt{x}+1}\)
Ta thấy : \(\sqrt{x}\ge0\)
=> \(4-\frac{3}{\sqrt{x}+1}\ge1\)
Vậy MinP = 1 khi x = 0
Cho hai biểu thức \(A=\frac{\sqrt{x}-3}{x-\sqrt{x}+1}\) và \(B=\left(\frac{3\sqrt{x}+6}{x-9}-\frac{2}{\sqrt{x}-3}\right);\frac{1}{\sqrt{x}+3}\)
a) Tính giá trị biểu thức A khi x=4
b) Rút gọn biểu thức B
c) Cho biểu thức P=A.B. Chứng minh: GTTĐ của P=P
a) Ta có:
\(A=\frac{\sqrt{x}-3}{x-\sqrt{x}+1}\)
\(A=\frac{\sqrt{4}-3}{4-\sqrt{4}+1}\)
\(A=\frac{2-3}{4-2+1}=-\frac{1}{3}\)
b) đk: \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)
\(B=\left(\frac{3\sqrt{x}+6}{x-9}-\frac{2}{\sqrt{x}-3}\right):\frac{1}{\sqrt{x}+3}\)
\(B=\frac{3\sqrt{x}+6-2\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\left(\sqrt{x}+3\right)\)
\(B=\frac{3\sqrt{x}+6-2\sqrt{x}-6}{\sqrt{x}-3}\)
\(B=\frac{\sqrt{x}}{\sqrt{x}-3}\)
c) \(P=AB\)
\(P=\frac{\sqrt{x}-3}{x-\sqrt{x}+1}\cdot\frac{\sqrt{x}}{\sqrt{x}-3}\)
\(P=\frac{\sqrt{x}}{x-\sqrt{x}+1}\)
Vì \(\left|P\right|=P\Leftrightarrow\orbr{\begin{cases}P=P\\P=-P\end{cases}}\Leftrightarrow\orbr{\begin{cases}0=0\left(tm\right)\\\sqrt{x}=-\sqrt{x}\end{cases}}\Rightarrow\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)
Bài I: $\left(2,0\right.$ điếm) Cho hai biểu thức $A=\frac{4 \sqrt{x}}{\sqrt{x}-1} ; B=\frac{1}{\sqrt{x}+1}+\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-1}$ với $x \geq 0 ; x \neq 1$
1. Tính giá trị biểu thức $A$ khi $x=49$;
2. Chứng minh $B=\frac{\sqrt{x}+1}{\sqrt{x}-1}$;
3. Cho $P=A: B$. Tìm giá trị của $x$ để $P(\sqrt{x}+1)=x+4+\sqrt{x-4}$.
1) Khi x = 49 thì:
\(A=\frac{4\sqrt{49}}{\sqrt{49}-1}=\frac{4\cdot7}{7-1}=\frac{28}{6}=\frac{14}{3}\)
2) Ta có:
\(B=\frac{1}{\sqrt{x}+1}+\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-1}\)
\(B=\frac{\sqrt{x}-1+x+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
c) \(P=A\div B=\frac{4\sqrt{x}}{\sqrt{x}-1}\div\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{4\sqrt{x}}{\sqrt{x}+1}\)
Ta có: \(P\left(\sqrt{x}+1\right)=x+4+\sqrt{x-4}\)
\(\Leftrightarrow\frac{4\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}=x+4+\sqrt{x-4}\)
\(\Leftrightarrow4\sqrt{x}=x+4+\sqrt{x-4}\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+\sqrt{x-4}=0\)
Mà \(VT\ge0\left(\forall x\ge0,x\ne1\right)\)
\(\Rightarrow\hept{\begin{cases}\left(\sqrt{x}-2\right)^2=0\\\sqrt{x-4}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}=2\\x-4=0\end{cases}}\Rightarrow x=4\)
Vậy x = 4
Cho biểu thức ; \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{3\sqrt{x}+1}{x-1}\)
1, Rút gọn
2, Tìm m để \(mA=\sqrt{x}-2\)có hai nghiệm phân biệt
3, Tìm GTNN của biểu thức A
Cho biểu thức E = \(\left(\frac{\sqrt{x}}{\sqrt{x}-3}+\frac{\sqrt{x}+1}{\sqrt{x}+3}-\frac{2\sqrt{x}}{\sqrt{x}-1}\right)\div\frac{-x+14\sqrt{x}+3}{x\sqrt{x}-4x+3\sqrt{x}}\)
a. Tìm điều kiện để biểu thức được xác định
b. Rút gọn biểu thức
Cho biểu thức A = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{3\sqrt{x}+1}{x-1}\)
Rút gọn biểu thức A.
Cho biểu thức
A=\(\frac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{3-\sqrt{x}}-\frac{\sqrt{x}+1}{\sqrt{x}+1}\)
a) Rút gọn biểu thức
b)Tìm GTNN của A
ai giải jup mik