Cho (O,R)và 1 điểm A nằm giữa (O).Vẽ các tiếp tuyến AB;AC(B,C LÀ 1 TIẾP ĐIỂM).Chứng minh rằng BAC=60 độ khi mà chỉ khi OA=2R
1. Cho (O; R) cố định và điểm A thay đổi nằm ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với (O) (với B, C là các tiếp điểm). Vẽ cát tuyến ADE với (O) (D nằm giữa A và E ; DE không đi qua O). Gọi H là giao điểm của AO và BC.
a. Chứng minh rằng tứ giác ABOC nội tiếp đường tròn.
b. Chứng minh rằng AH.AO = AD.AE và tứ giác DEOH là tứ giác nội tiếp.
c. Qua O vẽ đường thẳng vuông góc với AO cắt các tia AB, AC lần lượt tại M, N. Tìm vị trí của điểm A ở ngoài (O) để diện tích tam giác AMN đạt giá trị nhỏ nhất.
a) Xét tứ giác ABOC có
\(\widehat{ABO}\) và \(\widehat{ACO}\) là hai góc đối
\(\widehat{ABO}+\widehat{ACO}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABO vuông tại B có BH là đường cao ứng với cạnh huyền OA, ta được:
\(AH\cdot AO=AB^2\)(1)
Xét (O) có
\(\widehat{ABD}\) là góc tạo bởi tiếp tuyến BA và dây cung BD
\(\widehat{BED}\) là góc nội tiếp chắn \(\stackrel\frown{BD}\)
Do đó: \(\widehat{ABD}=\widehat{BED}\)(Hệ quả góc tạo bởi tiếp tuyến và dây cung)
hay \(\widehat{ABD}=\widehat{AEB}\)
Xét ΔABD và ΔAEB có
\(\widehat{ABD}=\widehat{AEB}\)
\(\widehat{BAD}\) chung
Do đó: ΔABD∼ΔAEB(g-g)
Suy ra: \(\dfrac{AB}{AE}=\dfrac{AD}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=AE\cdot AD\)(2)
Từ (1) và (2) suy ra \(AH\cdot AO=AD\cdot AE\)(đpcm)
Cho đường tròn (O;R) và điểm A nằm ngoài đường tròn(O) vẽ hai tiếp tuyến AB, AC của (O) ( B và C là tiếp điểm), vẽ cát tuyến ADE của đường tròn (O) (D, E thuộc O) D nằm giữa A và E. Tia AD nằm giữa hai tia AB và AO
a. Chứng minh tứ giác ABOC nội tiếp đường tròn, xác định tâm của đường tròn ngoại tiếp
b.Gọi H là giao điểm của OA và BC chứng minh AB2 = AD.AE và AB2 = AH.AO
c. Đường thẳng AO cắt đường tròn (O) tại M và N (M nằm giữa A và O) Chứng minh EH.AD = MH.AN
a) Xét tứ giác ABOC có
\(\widehat{OBA}\) và \(\widehat{OCA}\) là hai góc đối
\(\widehat{OBA}+\widehat{OCA}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Cho đường tròn (O;R)và điểm A nằm ngoài đường tròn (O). Vẽ hai tiếp tuyến AB,AC của đường tròn (O)(B,C là hai tiếp điểm). Vẽ cát tuyến ADE của đường tròn (O) (D, E thuộc đường tròn (O); D nằm giữa A và E, tia AD nằm giữa hai tia AB,AO). Gọi I là trung điểm của DE và H là giao điểm của AO và BC.
Chứng minh : góc EHO = góc EDO
Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc BC tại H
=>AH*AO=AB^2
Xet ΔABD và ΔAEB có
góc ABD=góc AEB
góc BAD chung
=>ΔABD đồng dạng với ΔAEB
=>AB^2=AD*AE=AH*AO
=>AD/AO=AH/AE
=>ΔADH đồng dạng với ΔAOE
=>góc ADH=góc AOE
=>góc DHO+góc DEO=180 độ
=>DEOH nội tiếp
=>góc EHO=góc EDO
:Cho đường tròn (O; R) và điểm A nằm ngoài đường tròn (O). Vẽ hai tiếp tuyến AB, AC của (O) (B, C là tiếp điểm). Vẽ cát tuyến ADE của (O) (D, E thuộc (O); D nằmgiữa Avà E; tia AD nằm giữa hai tia AB và AO). a) Chứng minh tứ giác ABOC nội tiếp được đường tròn và AB2 = AD. AE. b) Gọi H là giao điểm của OA và BC. Chứng minh tứ giác DEOH nội tiếp. c) Đường thẳng AO cắt đường tròn (O) tại M và N (M nằm giữa A và O). Chứng minh EH.AD = MH.AN.
Cho đường tròn (O;R) và điểm A nằm ngoài đường tròn. Qua A kẻ 2 tiếp tuyến AB, AC với đường tròn (B,C là các tiếp điểm)
a) Chứng minh: 4 điểm A,B,O,C cùng thuộc một đường tròn
b) Kẻ cát tuyến ADE nằm giữa AO và AB (D nằm giữa A và E), kẻ các tiếp tuyến tại D và E cắt nhau tại S. Nối BC cắt OA tại H. Chứng minh: R^2=OH.OA và 3 điểm S, B,C thẳng hàng
a: Xét tứ giác ABOC có \(\widehat{ABO}+\widehat{ACO}=90^0+90^0=180^0\)
nên ABOC là tứ giác nội tiếp
=>A,B,O,C cùng thuộc một đường tròn
b: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AO là đường trung trực của BC
=>AO\(\perp\)BC tại trung điểm H của BC
Gọi K là giao điểm của OS và ED
Xét (O) có
SE,SD là các tiếp tuyến
Do đó: SE=SD
=>S nằm trên đường trung trực của ED(3)
Ta có: OE=OD
=>O nằm trên đường trung trực của ED(4)
Từ (3) và (4) suy ra SO là đường trung trực của ED
=>SO\(\perp\)ED tại trung điểm K của ED
Xét ΔOBA vuông tại B có BH là đường cao
nên \(OH\cdot OA=OB^2=R^2\left(5\right)\)
Xét ΔODS vuông tại D có DK là đường cao
nên \(OK\cdot OS=OD^2=R^2\left(6\right)\)
Từ (5) và (6) suy ra \(OH\cdot OA=OK\cdot OS\)
=>\(\dfrac{OH}{OK}=\dfrac{OS}{OA}\)
Xét ΔOHS và ΔOKA có
\(\dfrac{OH}{OK}=\dfrac{OS}{OA}\)
góc HOS chung
Do đó: ΔOHS đồng dạng với ΔOKA
=>\(\widehat{OHS}=\widehat{OKA}\)
=>\(\widehat{OHS}=90^0\)
=>HO\(\perp\)SH tại H
mà HO\(\perp\)BH tại H
và SH,BH có điểm chung là H
nên S,H,B thẳng hàng
mà H,B,C thẳng hàng
nên S,B,H,C thẳng hàng
=>S,B,C thẳng hàng
Cho điểm A nằm ngoài đường tròn (O,R). Vẽ AB, AC là các tiếp tuyến của đường tròn (O) (B, C là các tiếp điểm). Vẽ cát tuyến ADE của đường tròn O ( D nằm giữa A và E). Các tiếp tuyến tại D và E của (O) cắt nhau tại K, OA cắt Bc tại H.
a) Chứng minh KH vuông góc với OA; K, B, C thẳng hàng.
b) AO cắt (O) tại M, N ( M nằm giữa O, H). Chứng minh KH, DN, EM đồng quy
Cho điểm A nằm ngoài đường tròn (O;R). Vẽ các tiếp tuyến AB, AC với đường tròn (O) tại B và C.
a) CM: tứ giác ABOC nội tiếp được đường tròn
b) Vẽ cát tuyến ADE với đường tròn (O), cát tuyến ADE không qua tâm O; D nằm giữa A và E ). CM: AB^2=AD.AE=OA^2-R^2
c) Gọi H là giao điểm của BC và OA. Cm: tứ giác HDEO nội tiếp
Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.
a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp
b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN
Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.
a) C/m: MOCD là hình bình hành
b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.
Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).
a) C/m: MI là tiếp tuyến của (O)
b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.
Bài 1: Cho (O;R) đường kính AB. Góc I là diểm nằm giữa A và O. Qua I vẽ dây cung CD vuông góc với OA. Dụng các tiếp tuyến tại A và B của đường tròn. Tiếp tuyến tại C cắt tiếp tuyến tại A và B lần lượt ở E và F.
a) Chứng minh 4 điểm A,E,C,O cùng thuộc 1 đường tròn.
b) Tính độ dài CI biết AB =20 cm , AI =4cm
c) Cm góc ÈO=90 độ và AE.BE=R^2