Trong hệ tọa độ Oxy. Cho tam giác ABC có A(2;3), B(1;0), C(-1;-2). Phương trình đường trung tuyến kẻ từ đỉnh A của tam giác ABC là
A. 2x-y-1=0
B. x-2y+4=0
C. x+2y-8=0
D. 2x+y-7=0
Trong hệ tọa độ Oxy cho tam giác ABC có A(3 ; 5) ; B( 1 ;2) và C( 5 ;2). Tìm tọa độ trọng tâm G của tam giác ABC ?
A. G( -9 ; -9)
B. G 9 2 ; 9 2
C. G( 3 ;3)
D. G(9 ; 9)
Trong hệ tọa độ Oxy cho tam giác ABC có A(3 ; 5) ; B( 1 ;2) và C( 5 ;2). Tìm tọa độ trọng tâm G của tam giác ABC ?
A. G( -9 ; -9)
B.
C. G( 3 ;3)
D.G(9 ; 9)
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(-2;4), B(4;1), C(-2;-1). Tìm tọa độ trực tâm H tam giác.
vecto AH=(x+2;y-4); vecto BC=(-6;-2)
vecto BH=(x-4;y-1); vecto AC=(0;-5)
Theo đề, ta có: -6(x+2)-2(y-4)=0 và 0(x-4)-5(y-1)=0
=>y=1 và -6(x+2)=2(y-4)=2*(1-4)=-6
=>x+2=1 và y=1
=>x=-1 và y=1
Trong hệ trục tọa độ Oxy, cho tam giác ABC có A(2;–2), B(1;–1), C(5;2). Độ dài đường cao AH của tam giác ABC là
A. 3 5
B. 7 5
C. 9 5
D. 1 5
Chọn B.
*) AH là đường cao của tam giác ABC.
*) Lập phương trình cạnh BC
B(1;-1), C(5;2)
(BC):
⇒ 3.(x - 5) - 4.(y - 2) = 0 ⇔ 3x - 15 - 4y + 8 = 0 ⇔ 3x - 4y - 7 = 0
Ta có:
Trong hệ tọa độ Oxy ; cho tam giác ABC có A(-2 ; 2) : B(3 ; 5) và trọng tâm là gốc tọa độ O(0 ; 0). Tìm tọa độ đỉnh C?
A. C(-1 ; - 7)
B. C( 2 ; -2)
C. C(-3 ; -3)
D. (1 ; 7)
Trong hệ tọa độ Oxy ; cho tam giác ABC có A(-2 ; 2) : B(3 ; 5) và trọng tâm là gốc tọa độ O(0 ; 0). Tìm tọa độ đỉnh C?
A. C(-1 ; - 7)
B. C( 2 ; -2)
C. C(-3 ; -3)
D. (1 ; 7)
Chọn A.
Gọi tọa độ điểm C( x ; y)
Vì O là trọng tâm tam giác ABC nên
Trong hệ trục tọa độ Oxy cho tam giác ABC. Biết điểm A(4;4), điểm B(2;2), góc B 45 độ và diện tích ram giác ABC bằng 2 . Tìm tọa độ điểm C có hoành độ x phải lớn hơn 2
Phương trình đường thẳng BC: a(x-2) + b(y-2)=0
cos(BA;BC)=cos\(45^0\)=\(\dfrac{1}{\sqrt{2}}=\dfrac{\left|a-b\right|}{\sqrt{2\left(a^2+b^2\right)}}\)
\(\Leftrightarrow\left[{}\begin{matrix}a=0\\b=0\end{matrix}\right.\). Vì a,b không đồng thời bằng 0 nên suy ra \(\left[{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)
Vì tọa độ C có hoành độ x lớn hơn 2 nên phương trình đường thẳng BC là y=2.
Ta có:\(S_{ABC}=\dfrac{1}{2}AB.BC.sin45^0\)\(\Leftrightarrow2=\dfrac{1}{2}\sqrt{8}\sqrt{\left(x_C-2\right)^2}.\dfrac{\sqrt{2}}{2}\Leftrightarrow x_C=4\)
Vậy tọa độ C(4;2)
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(2;-1), B(4;5) và C(-3;2). Lập phương trình đường cao của tam giác ABC kẻ từ A.
A. 7x + 3y - 11 = 0
B. -3x + 7y + 13 = 0
C. 3x + 7y + 1 = 0
D. 7x + 3y + 13 = 0
Chọn A.
Gọi AH là đường cao của tam giác ABC ⇒ AH ⊥ BC.
B(4;5), C(-3;2)
Phương trình đường cao AH đi qua A(2;-1) nhận là VTPT là:
7.(x - 2) + 3.(y + 1) = 0 ⇔ 7x - 14 + 3y + 3 = 0 ⇔ 7x + 3y - 11 = 0
Vậy phương trình đường cao AH là 7x + 3y - 11 = 0.
Trong hệ tọa độ Oxy, cho tam giác ABC có A(6; 1) ; B (-3; 5) và trọng tâm G(-1;1). Tìm tọa độ đỉnh C
A. ( 6 ; -3)
B. (- 6; 3)
C. (- 6; -3)
D. (- 3 ; 6)
Gọi C(x, y)
Vì G là trọng tâm tam giác ABC nên :
6 + − 3 + x 3 = − 1 1 + 5 + y 3 = 1 ⇔ x = − 6 y = − 3 .
Đáp án C