Những câu hỏi liên quan
NC
Xem chi tiết
LA
3 tháng 9 2016 lúc 18:39

a) \(\sqrt{36}=6\)

b)\(-\sqrt{16}=-4\)

c)\(\sqrt{\frac{9}{25}}=\frac{3}{5}\)

d)\(\sqrt{3^2}=\sqrt{9}=3\)

e)\(\sqrt{\left(-3\right)^2}=\sqrt{9}=3\)

Bình luận (0)
NC
Xem chi tiết
H24
Xem chi tiết
AQ
3 tháng 12 2023 lúc 7:58

Bạn đang tìm kiếm số tự nhiên n để biểu thức: sqrt(5 + sqrt(25 - n)) + sqrt(5 - sqrt(25 - n)) có giá trị nguyên. Để giải quyết vấn đề này, chúng ta sẽ sử dụng một số tính chất của các số nguyên và căn bậc hai.

Đầu tiên, ta nhận thấy rằng nếu biểu thức trên có giá trị nguyên, thì cả hai căn bậc hai phải là số nguyên. Điều này có nghĩa là 5 + sqrt(25 - n) và 5 - sqrt(25 - n) đều phải là bình phương của một số nguyên. Ta có thể viết lại hai biểu thức này như sau:

 

5 + sqrt(25 - n) = a^2 5 - sqrt(25 - n) = b^2

Trong đó a và b là các số nguyên. Từ đó, ta có:

 

a^2 + b^2 = 10 a^2 - b^2 = sqrt(25 - n)

Ta có thể giải hệ phương trình này để tìm a, b, và n. Đầu tiên, ta có:

 

(a^2 + b^2) + (a^2 - b^2) = 2a^2 = 10 + sqrt(25 - n)

Từ đó, ta suy ra:

 

a^2 = 5 + (1/2)sqrt(25 - n)

Tương tự, ta có:

 

b^2 = 5 - (1/2)sqrt(25 - n)

Do a và b là các số nguyên, ta có thể suy ra rằng sqrt(25 - n) phải là một số chẵn. Từ đó, ta có:

 

25 - n = 4k^2

Với k là một số nguyên. Từ đó, ta suy ra:

 

n = 25 - 4k^2

Vậy để biểu thức sqrt(5 + sqrt(25 - n)) + sqrt(5 - sqrt(25 - n)) có giá trị nguyên, thì n phải là một số tự nhiên sao cho sqrt(25 - n) là một số chẵn. Các giá trị của n thỏa mãn điều kiện này là n = 3 và n = 7 1.

Vì vậy, để biểu thức sqrt(5 + sqrt(25 - n)) + sqrt(5 - sqrt(25 - n)) có giá trị nguyên, thì n phải là một trong hai số tự nhiên 3 hoặc 7.

Bình luận (0)
AQ
3 tháng 12 2023 lúc 8:02

Bạn đang tìm kiếm số tự nhiên n để biểu thức: sqrt(5 + sqrt(25 - n)) + sqrt(5 - sqrt(25 - n)) có giá trị nguyên. Để giải quyết vấn đề này, chúng ta sẽ sử dụng một số tính chất của các số nguyên và căn bậc hai.

Đầu tiên, ta nhận thấy rằng nếu biểu thức trên có giá trị nguyên, thì cả hai căn bậc hai phải là số nguyên. Điều này có nghĩa là 5 + sqrt(25 - n) và 5 - sqrt(25 - n) đều phải là bình phương của một số nguyên. Ta có thể viết lại hai biểu thức này như sau:

 

5 + sqrt(25 - n) = a^2 5 - sqrt(25 - n) = b^2

Trong đó a và b là các số nguyên. Từ đó, ta có:

 

a^2 + b^2 = 10 a^2 - b^2 = sqrt(25 - n)

Ta có thể giải hệ phương trình này để tìm a, b, và n. Đầu tiên, ta có:

 

(a^2 + b^2) + (a^2 - b^2) = 2a^2 = 10 + sqrt(25 - n)

Từ đó, ta suy ra:

 

a^2 = 5 + (1/2)sqrt(25 - n)

Tương tự, ta có:

 

b^2 = 5 - (1/2)sqrt(25 - n)

Do a và b là các số nguyên, ta có thể suy ra rằng sqrt(25 - n) phải là một số chẵn. Từ đó, ta có:

 

25 - n = 4k^2

Với k là một số nguyên. Từ đó, ta suy ra:

 

n = 25 - 4k^2

Vậy để biểu thức sqrt(5 + sqrt(25 - n)) + sqrt(5 - sqrt(25 - n)) có giá trị nguyên, thì n phải là một số tự nhiên sao cho sqrt(25 - n) là một số chẵn. Các giá trị của n thỏa mãn điều kiện này là n = 3 và n = 7 1.

Vì vậy, để biểu thức sqrt(5 + sqrt(25 - n)) + sqrt(5 - sqrt(25 - n)) có giá trị nguyên, thì n phải là một trong hai số tự nhiên 3 hoặc 7.

Bình luận (0)
H24
Xem chi tiết
KR
5 tháng 10 2023 lúc 22:57

`#3107.101107`

a)

`2/5 \sqrt{25} - 1/2 \sqrt{4}`

`= 2/5 * \sqrt{5^2} - 1/2 * \sqrt{2^2}`

`= 2/5*5 - 1/2*2`

`= 2 - 1`

`= 1`

b)

`0,5*\sqrt{0,09} + 5*\sqrt{0,81}`

`= 0,5*\sqrt{(0,3)^2} + 5*\sqrt{(0,9)^2}`

`= 0,5*0,3 + 5*0,9`

`= 0,15 + 4,5`

`= 4,65`

c)

`2/5\sqrt{25/36} - 5/2\sqrt{4/25}`

`= 2/5*\sqrt{(5^2)/(6^2)} - 5/2*\sqrt{(2^2)/(5^2)}`

`= 2/5*5/6 - 5/2*2/5`

`= 1/3 - 1`

`= -2/3`

d)

`-2 \sqrt{(-36)/(-16)} + 5 \sqrt{(-81)/(-25)}`

`= -2*\sqrt{36/16} + 5*\sqrt{81/25}`

`= -2*\sqrt{(6^2)/(4^2)} + 5*\sqrt{(9^2)/(5^2)}`

`= -2*6/4 + 5*9/5`

`= -3 + 9`

`= 6`

Bình luận (1)
DN
Xem chi tiết
LV
Xem chi tiết
7T
Xem chi tiết
NT
8 tháng 11 2021 lúc 21:14

a: =6

b: =-4

Bình luận (1)
NM
8 tháng 11 2021 lúc 21:14

\(a,=6\\ b,=-4\\ c,=\dfrac{3}{5}\\ d,=3\\ e,=3\)

Bình luận (1)
LK
8 tháng 11 2021 lúc 21:20

a) \(\sqrt{36}=6.\)

b) \(-\sqrt{16}=-4.\)

c) \(\sqrt{\dfrac{9}{25}}=\dfrac{3}{5}.\)

d) \(\sqrt{3^2}=\sqrt{9}=3.\)

e) \(\sqrt{\left(-3\right)^2}=\sqrt{9}=3\)

Bình luận (11)
PB
Xem chi tiết
CT
20 tháng 10 2017 lúc 6:54

Bình luận (0)
PB
Xem chi tiết
CT
15 tháng 8 2019 lúc 3:06

Bình luận (0)