Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
PB
Xem chi tiết
NT
Xem chi tiết
KA
Xem chi tiết
PT
22 tháng 4 2021 lúc 20:09

Bài 1: Ta có 200920 = (20092)10 = (2009.2009)10

                    2009200910 = (10001.2009)10

Mà 2009 < 10001 ➩ (2009.2009)10 < (10001.2009)10

Vậy 200920 < 2009200910

Bình luận (2)
NL
22 tháng 4 2021 lúc 23:06

Bai 3:

Theo giả thiết suy ra các tích x1x2 , x2x3 , ...., xnx1 chỉ nhận một trong hai giá trị là 1 và -1

Do đó x1x2 + x2x3 +...+ xnx1 = 0 <=> n = 2m

=> Đồng thời có m số hạng bằng 1 và m số hạng bằng -1

Nhận thấy : (x1x2)(x2x3)...(xnx1) = x12x22...xn2 = 1

=> Số các số hạng bằng -1 phải là số chẵn

=> m = 2k

Suy ra n = 2m = 2.2k = 4k

=> n chia hết cho 4

Bình luận (0)
NL
22 tháng 4 2021 lúc 23:11

bai 2:

25−y²=8(x−2009)

⇒25−y²=8x−16072

⇒8x=25−y²−16072

⇒8x=25−16072−y²

⇒8x=−16047−y²

8×−16047−y²8=−16047−y²

⇒−16047−y²=−16047−y²

⇒y có vô giá trị nhé (y∈R)

Vậy 

Bình luận (0)
N7
Xem chi tiết
NT
1 tháng 8 2023 lúc 10:42

10:

Vì n là số lẻ nên n=2k-1

Số số hạng là (2k-1-1):2+1=k(số)

Tổng là (2k-1+1)*k/2=2k*k/2=k^2 là số chính phương

11: 

n^3-n^2+2n+7 chia hết cho n^2+1

=>n^3+n-n^2-1+n+8 chia hết cho n^2+1

=>n+8 chia hết cho n^2+1

=>n^2-64 chia hết cho n^2+1

=>n^2+1-65 chia hết cho n^2+1

=>n^2+1 thuộc {1;5;13;65}

=>\(n\in\left\{0;2;-2;2\sqrt{3};-2\sqrt{3};8;-8\right\}\)

Bình luận (0)
DL
Xem chi tiết
TV
Xem chi tiết
PN
12 tháng 5 2021 lúc 12:15

Áp dụng bất đẳng thức Svacxo và bất đẳng thức \(\frac{1}{4ab}\ge\frac{1}{\left(a+b\right)^2}\)ta có :

\(Q=\frac{2}{x^2+y^2}+\frac{2}{2xy}+\frac{4}{2xy}=2\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{8}{4xy}\)

\(\ge2\frac{\left(1+1\right)^2}{\left(x+y\right)^2}+\frac{8}{\left(x+y\right)^2}=\frac{2.4}{2^2}+\frac{8}{2^2}=\frac{16}{4}=4\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=1\)

Vậy min Q = 4 khi x = y = 1

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
YY
Xem chi tiết
NN
Xem chi tiết
NT
18 tháng 8 2021 lúc 22:56

6: \(-x^2y\left(xy^2-\dfrac{1}{2}xy+\dfrac{3}{4}x^2y^2\right)\)

\(=-x^3y^3+\dfrac{1}{2}x^3y^2-\dfrac{3}{4}x^4y^3\)

7: \(\dfrac{2}{3}x^2y\cdot\left(3xy-x^2+y\right)\)

\(=2x^3y^2-\dfrac{2}{3}x^4y+\dfrac{2}{3}x^2y^2\)

8: \(-\dfrac{1}{2}xy\left(4x^3-5xy+2x\right)\)

\(=-2x^4y+\dfrac{5}{2}x^2y^2-x^2y\)

Bình luận (0)
NT
19 tháng 8 2021 lúc 0:36

9: \(2x^2\left(x^2+3x+\dfrac{1}{2}\right)=2x^4+6x^3+x^2\)

10: \(-\dfrac{3}{2}x^4y^2\left(6x^4-\dfrac{10}{9}x^2y^3-y^5\right)\)

\(=-9x^8y^2+\dfrac{5}{3}x^6y^5+\dfrac{3}{2}x^4y^7\)

11: \(\dfrac{2}{3}x^3\left(x+x^2-\dfrac{3}{4}x^5\right)=\dfrac{2}{3}x^3+\dfrac{2}{3}x^5-\dfrac{1}{2}x^8\)

12: \(2xy^2\left(xy+3x^2y-\dfrac{2}{3}xy^3\right)=2x^2y^3+6x^3y^3-\dfrac{4}{3}x^2y^5\)

13: \(3x\left(2x^3-\dfrac{1}{3}x^2-4x\right)=6x^4-x^3-12x^2\)

Bình luận (0)
TL
Xem chi tiết