Cho số thực x; y; z lớn hơn 0 thoả mãn: \(3\sqrt{xy}+2\sqrt{xz}=2\)
Tìm GTNN của \(A=\dfrac{5yz}{x}+\dfrac{7xz}{y}+\dfrac{8xy}{z}\)
Cho một dãy số gồm n số thực và một số thực x viết chương trình nhập n số thực đó và đếm xem có bao nhiêu số trong dãy bằng số thực x
#include <bits/stdc++.h>
using namespace std;
long long a[100],i,n,x,dem;
int main()
{
cin>>n;
for (i=1; i<=n; i++) cin>>a[i];
cin>>x;
dem=0;
for (i=1; i<=n; i++)
if (x==a[i]) dem++;
cout<<dem;
return 0;
}
a) Tìm tất cả các số thực x sao cho x2 = 4.
b) Tìm tất cả các số thực x sao cho x3 = - 8.
a) \({x^2} = 4 = {2^2} = {\left( { - 2} \right)^2} \Leftrightarrow x = \pm 2\)
b) \({x^3} = - 8 = {\left( { - 2} \right)^3} \Leftrightarrow x = - 2.\)
- Chú ý:
Trong toán học, căn bậc chẵn của một số là một số lớn hơn 0. Do đó số âm không có căn bậc chẵn.
1. Cho số thực x. CMR: \(x^4+5>x^2+4x\)
2. Cho số thực x, y thỏa mãn x>y. CMR: \(x^3-3x+4\ge y^3-3y\)
3. Cho a, b là số thực dương thỏa mãn \(a^2+b^2=2\). CMR: \(\left(a+b\right)^5\ge16ab\sqrt{\left(1+a^2\right)\left(1+b^2\right)}\)
Cho x, y là các số thực dương thỏa mãn lnx + lny ≥ ln(x2+y) là các số thực dương thỏa mãn P = x + y
A. P = 6
B. P = 2 + 3 2
C. P = 3 + 2 2
D. P = 17 + 3
Đáp án C
Ta có
Khi đó
Vậy giá trị nhỏ nhất của biểu thức P là 3 + 2 2
Cho x, y là các số thực dương thỏa mãn ln x + ln y ≥ ln ( x 2 + y ) là các số thực dương thỏa mãn P = x + y
Bài 8. Cho M = \(\dfrac{\sqrt{x}+5}{\sqrt{x}+1}\) với 𝑥 ≥ 0; 𝑥 ≠ 1. Tìm số thực x để M có giá trị nguyên
Bài 9. Cho P = \(\dfrac{\sqrt{x}+7}{\sqrt{x}+2}\) với x ≥ 0; x ≠ 1. Tìm các số thực x để P có giá trị là số nguyên.
Bài 8:
\(M=1+\frac{4}{\sqrt{x}+1}\)
Để $M$ nguyên thì $\frac{4}{\sqrt{x}+1}$ nguyên
Đặt $\frac{4}{\sqrt{x}+1}=t$ với $t$ là số nguyên dương
$\Rightarrow \sqrt{x}+1=\frac{4}{t}$
$\sqrt{x}=\frac{4}{t}-1=\frac{4-t}{t}\geq 0$
$\Rightarrow 4-t\geq 0\Rightarrow t\leq 4$
Mà $t$ nguyên dương suy ra $t=1;2;3;4$
Kéo theo $x=9; 1; \frac{1}{9}; 0$
Kết hợp đkxđ nên $x=0; \frac{1}{9};9$
Bài 9:
$P=1+\frac{5}{\sqrt{x}+2}$
Để $P$ nguyên thì $\frac{5}{\sqrt{x}+2}$ nguyên
Đặt $\frac{5}{\sqrt{x}+2}=t$ với $t\in\mathbb{Z}^+$
$\Leftrightarrow \sqrt{x}+2=\frac{5}{t}$
$\Leftrightarrow \sqrt{x}=\frac{5-2t}{t}\geq 0$
Với $t>0\Rightarrow 5-2t\geq 0$
$\Leftrightarrow t\leq \frac{5}{2}$
Vì $t$ nguyên dương suy ra $t=1;2$
$\Rightarrow x=9; \frac{1}{4}$ (thỏa đkxđ)
Bài 8:
Để M nguyên thì \(\sqrt{x}+5⋮\sqrt{x}+1\)
\(\Leftrightarrow\sqrt{x}+1\inƯ\left(4\right)\)
\(\Leftrightarrow\sqrt{x}+1\in\left\{1;2;4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{0;1;3\right\}\)
hay \(x\in\left\{0;1;9\right\}\)
Cho số thực x thỏa mãn log x = 1 2 log 3 a - 2 log b + 3 log c (a,b,c là các số thực dương). Hãy biểu diễn x theo a, b, c.
A. x = c 3 3 a b 2
B. x = 3 a b 2 c 3
C. x = 3 a c b 2
D. x = 3 a c 3 b 2
Cho số thực x lớn hơn 1 và ba số thực dương a, b, c khác 1 thỏa mãn điều kiện loga x > logb x > logc x. Mệnh đề nào sau đây đúng ?
A. c > a > b
B. b > a > c
C. c > b > a
D. a > b > c
Cho x, y thuộc số thực sao cho x+1/y là số nguyên
cho các số thực x, y sao cho x + 2y, 2x-y là số hữu tỷ. CM x, y là số hữu tỉ
Để x + 2y và 2x - y là số hữu tỷ, ta có thể thiết lập hệ phương trình sau:
x + 2y = a/b (1)
2x - y = c/d (2)
Trong đó a, b, c, d là các số nguyên và b, d khác 0.
Từ phương trình (1), ta có x = a/b - 2y. Thay vào phương trình (2), ta có:
2(a/b - 2y) - y = c/d
2a/b - 4y - y = c/d
2a/b - 5y = c/d
Để 2a/b - 5y là số hữu tỷ, ta cần 5y cũng là số hữu tỷ. Vì vậy, y phải là số hữu tỷ.
Tiếp theo, để x = a/b - 2y là số hữu tỷ, ta cần a/b - 2y cũng là số hữu tỷ. Vì y là số hữu tỷ, nên a/b - 2y cũng là số hữu tỷ.
Vậy, nếu x + 2y và 2x - y là số hữu tỷ, thì x và y đều là số hữu tỉ.