Bài 1 Thực hiện phép tính rồi tính giá trị của biểu thức
a)A=x.(x+y)-x.(y-x) với x= -3 ; y=2
Bài 1 Thực hiện phép tính rồi tính giá trị của biểu thức
a) A=3x.(3-x)-5x.(x+1)+8(x2-x-2) vs x=-1
\(A=-3\left(3+1\right)+5\left(1-1\right)+8\left(-1+1-2\right)\)
\(A=-28\)
A=9x-3x2-5x2-5x+8x2-8x-16
=-4x-16
=-4(x-4)
Thay x=-1 vào A, ta được:
A(-1)=-4(-1-4)=(-4).(-5)=20
Vậy A(-1)=20
Bài 1 Thực hiện phép tính rồi tính giá trị của biểu thức
b) B=4x.(2x+y)+2y.(2x+y)-y(y+2x) vs x=1/2 ; y=-3/5
Ta có:
\(B=4x\left(2x+y\right)+2y\left(2x+y\right)-y\left(y+2x\right)\)
\(\Leftrightarrow B=\left(4x+2y-y\right)\left(2x+y\right)=\left(4x+y\right)\left(2x+y\right)=\left(4.\dfrac{1}{2}+\dfrac{-3}{5}\right)\left(2.\dfrac{1}{2}+\dfrac{-3}{5}\right)=\dfrac{14}{25}\)
Thực hiện phép tính :
Thực hiện phép tính :
5.x^2(x-y+1)+(x^2-1)(x+y)
Bài 2:
1: \(A=\left(x+2\right)\left(x^2-2x+4\right)+2\left(x+1\right)\left(1-x\right)\)
\(=\left(x+2\right)\left(x^2-x\cdot2+2^2\right)-2\left(x+1\right)\left(x-1\right)\)
\(=x^3+2^3-2\left(x^2-1\right)\)
\(=x^3+8-2x^2+2=x^3-2x^2+10\)
\(B=\left(2x-y\right)^2-2\left(4x^2-y^2\right)+\left(2x+y\right)^2+4\left(y+2\right)\)
\(=\left(2x-y\right)^2-2\cdot\left(2x-y\right)\left(2x+y\right)+\left(2x+y\right)^2+4\left(y+2\right)\)
\(=\left(2x-y-2x-y\right)^2+4\left(y+2\right)\)
\(=\left(-2y\right)^2+4\left(y+2\right)\)
\(=4y^2+4y+8\)
2: Khi x=2 thì \(A=2^3-2\cdot2^2+10=8-8+10=10\)
3: \(B=4y^2+4y+8\)
\(=4y^2+4y+1+7\)
\(=\left(2y+1\right)^2+7>=7>0\forall y\)
=>B luôn dương với mọi y
Bài 1:
5: \(x^2\left(x-y+1\right)+\left(x^2-1\right)\left(x+y\right)\)
\(=x^3-x^2y+x^2+x^3+x^2y-x-y\)
\(=2x^3-x+x^2-y\)
6: \(\left(3x-5\right)\left(2x+11\right)-6\left(x+7\right)^2\)
\(=6x^2+33x-10x-55-6\left(x^2+14x+49\right)\)
\(=6x^2+23x-55-6x^2-84x-294\)
=-61x-349
Thực hiện phép tính rồi tính giá trị của biểu thức:
a) A = x(x + y)- x(y - x) tại x= -3; y=2
b) B= 4x(2x + y) + 2y(2x + y)- y(y +2x) tại x=1/2; y= -3/4
c) C= 3x(3 - x)- 5x(x + 1) + 8(x^2 - x - 2) tại x= -1
`a)A=x(x+y)-x(y-x)`
`=x^2+xy-xy+x^2`
`=2x^2`
Thay `x=-3`
`=>A=2.9=18`
`b)B=4x(2x+y)+2y(2x+y)-y(y+2x)`
`=8x^2+4xy+4xy+2y^2-y^2-2xy`
`=8x^2+y^2+6xy`
Thay `x=1/2,y=-3/4`
`=>B=8*1/4+9/16-9/4`
`=2+9/16-9/4`
`=9/16-1/4=5/16`
BT2: Thực Hiện các phép tính , sau đó tính giá trị biểu thức
a) A=(x-2).(x4+2x3+4x2+8x+16) Với x=3 ĐS A=211
b) B=(x+1).(x7-x6+x5-x4+x3-x2+x-1) Với x=2 ĐS B=255
a: A=x^5-32
Khi x=3 thì A=3^5-32=243-32=211
b: B=x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+x^7-x^6+x^5-x^4+x^3-x^2+x-1
=x^8-1
=2^8-1=255
rút gọn rồi tính giá trị biểu thức
A=x.(x+y)-y.(x+y) với x=-1/2;y=--2
A = x ( x + y ) - y ( x + y )
A = ( x + y ) ( x - y )
A = x\(^2\) - y\(^2\)
Tại x = \(\dfrac{-1}{2}\) và y = -2 ta có
\(\left(\dfrac{-1}{2}\right)^2-\left(-2\right)^2\) \(=\) \(\dfrac{-15}{4}\)
\(A=x\left(x+y\right)-y\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y\right)\)
\(=x^2-y^2\)
Thay \(x=-\dfrac{1}{2}\) và \(y=-2\) vào biểu thức \(A\), ta có:
\(A=\left(-\dfrac{1}{2}\right)^2-\left(-2\right)^2\)
\(=\dfrac{1}{4}-4\)
\(=-\dfrac{15}{4}\)
Thực hiện phép nhân, rút gọn rồi tính giá trị của biểu thức:
a) x(x-y) +y (x+y) tại x= -6 y=8
x(x-y) + y(x+y)
=x(x-y) -y(x-y)
=(x-y)(x-y)
=(x-y)^2
=616
a) x(x – y) + y (x + y) = x2 – xy +yx + y2= x2+ y2
với x = -6, y = 8 biểu thức có giá trị là (-6)2 + 82 = 36 + 64 = 100
Bài 4: thực hiện các phép tính, sau đó tính giá trị biểu thức:
b, B=(x+1)(x^7-x^6+x^5-x^4+x^3-x^2+x-1) với x=2
c, C=(x+1)(x^6-x^5+x^4-x^3+x^2-x+1) với x=2
d, D=2x(10x^2-5x-2)-5x(4x^2-2x-1) với x=-5
Bài 5: thực hiện phép tính, sau đó tính giá trị biểu thức:
a, A=(x^3-x^2y+xy^2-y^3)(x+y) với x=2,y=-1/2
b, B=(a-b)(a^4+a^3b+a^2b^2+ab^3+b^4) với a=3,b=-2
c, (x^2-2xy+2y^2)(x^2+y^2)+2x^3y-3x^2y^2+2xy^3 với x=-1/2;y=-1/2
Trả lời:
Bài 4:
b, B = ( x + 1 ) ( x7 - x6 + x5 - x4 + x3 - x2 + x - 1 )
= x8 - x7 + x6 - x5 + x4 - x3 + x2 - x + x7 - x6 + x5 - x4 + x3 - x2 + x - 1
= x8 - 1
Thay x = 2 vào biểu thức B, ta có:
28 - 1 = 255
c, C = ( x + 1 ) ( x6 - x5 + x4 - x3 + x2 - x + 1 )
= x7 - x6 + x5 - x4 + x3 - x2 + x + x6 - x5 + x4 - x3 + x2 - x + 1
= x7 + 1
Thay x = 2 vào biểu thức C, ta có:
27 + 1 = 129
d, D = 2x ( 10x2 - 5x - 2 ) - 5x ( 4x2 - 2x - 1 )
= 20x3 - 10x2 - 4x - 20x3 + 10x2 + 5x
= x
Thay x = - 5 vào biểu thức D, ta có:
D = - 5
Bài 5:
a, A = ( x3 - x2y + xy2 - y3 ) ( x + y )
= x4 + x3y - x3y - x2y2 + x2y2 + xy3 - xy3 - y4
= x4 - y4
Thay x = 2; y = - 1/2 vào biểu thức A, ta có:
A = 24 - ( - 1/2 )4 = 16 - 1/16 = 255/16
b, B = ( a - b ) ( a4 + a3b + a2b2 + ab3 + b4 )
= a5 + a4b + a3b2 + a2b3 + ab4 - ab4 - a3b2 - a2b3 - ab4 - b5
= a5 + a4b - ab4 - b5
Thay a = 3; b = - 2 vào biểu thức B, ta có:
B = 35 + 34.( - 2 ) - 3.( - 2 )4 - ( - 2 )5 = 243 - 162 - 48 + 32 = 65
c, ( x2 - 2xy + 2y2 ) ( x2 + y2 ) + 2x3y - 3x2y2 + 2xy3
= x4 + x2y2 - 2x3y - 2xy3 + 2x2y2 + 2y4 + 2x3y - 3x2y2 + 2xy3
= x4 + 2y4
Thay x = - 1/2; y = - 1/2 vào biểu thức trên, ta có:
( - 1/2 )4 + 2.( - 1/2 )4 = 1/16 + 2. 1/16 = 1/16 + 1/8 = 3/16
Thực hiện phép nhân, rút gọn rồi tính giá trị của biểu thức:
x(x – y) + y(x + y) tại x = - 6 và y = 8
x(x – y) + y(x + y)
= x.x – x.y + y.x + y.y
= x2 – xy + xy + y2
= x2 + y2.
Tại x = –6 ; y = 8, giá trị biểu thức bằng : (–6)2 + 82 = 36 + 64 = 100.